1. Not finding help here? Sign up for a free 30min tutor trial with Chegg Tutors
    Dismiss Notice
Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

Definite Integrals

  1. Jun 24, 2007 #1
    ok so what has happened is my friends website is moving to a new location,
    he said the only way i can get to see it early is if i get the answer to this, he did this because he knows i know nothing about math.... so im one of you guys or gals can help me...


    DEFINITE INTEGRAL OF (0.43890022*X) FROM 1 TO 10

    thank you all

    p.s. i hope i put this in the right section lol i was told integrals are calculus :)
    Last edited: Jun 24, 2007
  2. jcsd
  3. Jun 24, 2007 #2
    do you know how to integrate?
  4. Jun 24, 2007 #3
    no i just finished HS with only minimum math so im tottaly in the dark....
  5. Jun 24, 2007 #4
    Right, so it would be pointless to show you how to obtain the answer, because you don't know how to do it! You just want the answer! Have you even given it a go?
  6. Jun 24, 2007 #5
    Please don't double post.
  7. Jun 24, 2007 #6
    umm i didnt double post someone quoted my saying thank you very much, ive tried to learn through the internet and ive tried using one of the calculators but i just dont understand it, if anyone doesnt feel right aobut jsut giving me and answer i would willing try to learn from them if they are willing to help teach me.....
  8. Jun 24, 2007 #7
    well, assuming that u dont know the definiton of the definite integral than here we go. The definite integral of a function is given with this formula:
    integ f(x)dx, from a to b = f(b)-f(a)
    Actually this is the area that the curve given by the function f(x) closes with the Ox axes.
    So, also you need to know that integ k*f(x)=k*integ f(x), where k is any real constant. Also you need to know that integ x dx = (x^2)/2

    I think this information is all you need to do find one of the axes of the square, and consequently the whole area of the square.

    I hope i was helpful.
Know someone interested in this topic? Share this thread via Reddit, Google+, Twitter, or Facebook

Have something to add?

Similar Discussions: Definite Integrals
  1. Definite integral (Replies: 1)

  2. Definite integral (Replies: 7)