- #1

- 32

- 0

**Hello there. I feel like this isn't the right answer, but I'd like some verification as to where exactly I went wrong! 1. Homework Statement is [tex]\int_{0}^{pi}x^2cos x dx[/tex]**

**3. The Attempt at a Solution went something like this:**

[tex]u=x^2 dv=cos x dx

du=2x dx v=\int_{0}^{pi}cos x dx= sin x[/tex]

The integral was then:

[tex]\int_{0)^{pi}x^2cos x dx= x^2 sin x\right]_{0}^{pi}-\int_{0}^{pi}sin x 2x dx[/tex]

to solve:

[tex]=x^2 sin x + cos x x^2[/tex]

[tex]=pi^2 sin pi + cos 0 o^2[/tex]

[tex]9.87 times 0=1+0[/tex]

[tex]=1[/tex]

Thanks for all your help in advance!

[tex]u=x^2 dv=cos x dx

du=2x dx v=\int_{0}^{pi}cos x dx= sin x[/tex]

The integral was then:

[tex]\int_{0)^{pi}x^2cos x dx= x^2 sin x\right]_{0}^{pi}-\int_{0}^{pi}sin x 2x dx[/tex]

to solve:

[tex]=x^2 sin x + cos x x^2[/tex]

[tex]=pi^2 sin pi + cos 0 o^2[/tex]

[tex]9.87 times 0=1+0[/tex]

[tex]=1[/tex]

Thanks for all your help in advance!

Last edited: