Hello!(adsbygoogle = window.adsbygoogle || []).push({});

The definition of Line Integral can be this:

[tex]\int_s\vec{f}\cdot d\vec{r}=\int_s(f_1dx+f_2dy+f_3dz)[/tex]

And the definition of Surface Integral can be this:

[tex]\int\int_S(f_1dydz+f_2dzdx+f_3dxdy)[/tex]

However, in actually:

[tex]\\dx=dy\wedge dz \\dy=dz\wedge dx \\dz=dx\wedge dy[/tex]

What do the Surface Integral be equal to:

[tex]\int\int_S(f_1dy\wedge dz+f_2dz\wedge dx+f_3dx\wedge dy)=\int\int_S(f_1dx+f_2dy+f_3dz)=\int\int_S\vec{f}\cdot d\vec{r}[/tex]

I know, I know... I know that, generally, the definition to Integral Surface is:

[tex]\int\int_S\vec{f}\cdot \hat{n}\;dS[/tex]

I until like this definition when compared to its respective Line Integral:

[tex]\int_s\vec{f}\cdot \hat{t}\;ds[/tex]

But, is correct to definite the Surface Integral as:

[tex]\int\int_S\vec{f}\cdot d\vec{r}[/tex]

being

[tex]d\vec{r}=(dx,dy,dz)[/tex]

?

**Physics Forums - The Fusion of Science and Community**

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Definition for Surface Integral

Loading...

Similar Threads - Definition Surface Integral | Date |
---|---|

B Question about a limit definition | Feb 27, 2018 |

I Integrating scaled and translated indicator function | Nov 20, 2017 |

I Surface Area of Volume of Revolution | Oct 10, 2017 |

B Definite integrals with +ve and -ve values | Jun 10, 2017 |

I Motivating definitions in calculus on manifolds | May 16, 2017 |

**Physics Forums - The Fusion of Science and Community**