1. Limited time only! Sign up for a free 30min personal tutor trial with Chegg Tutors
    Dismiss Notice
Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

Definition of relative error

  1. Sep 16, 2012 #1
    Hi all,

    I have a general question about relative error. Suppose that we have a vector of measurements [itex]\hat{b}=\left(\hat{b_{1}},\hat{b_{2}},...,\hat{b_{n}}\right)[/itex]. Furthermore, suppose that these measurements are accurate to 10%.

    My natural interpretation of this statement is that there is a "true" vector [itex]b=\left(b_{1},b_{2},...,b_{n}\right)[/itex] such that [itex]\frac{\left|b_{1}-\hat{b_{1}}\right|}{\left|b_{1}\right|}[/itex], [itex]\frac{\left|b_{2}-\hat{b_{2}}\right|}{\left|b_{2}\right|}[/itex], ..., [itex]\frac{\left|b_{n}-\hat{b_{n}}\right|}{\left|b_{n}\right|}≤0.1[/itex].

    I have seen in the literature that we can use the maximum norm of a vector to define the relative error. So, the relative error in [itex]\hat{b}[/itex] could be defined as [itex]\frac{\left\|b-\hat{b}\right\|}{\left\|b\right\|}[/itex] where [itex]\left\|v\right\|=\max\limits_{i} \left|v_i\right|[/itex].

    The problem that I find with this is the fact that we can't conclude anything about the individual entries from this definition. For example, if [itex]b=\left(1,2,3\right)[/itex] and [itex]\hat{b}=\left(1.14,1.9,3.15\right)[/itex], then [itex]\frac{\left\|b-\hat{b}\right\|}{\left\|b\right\|}=\frac{0.15}{3}=0.05≤0.1[/itex] which indicates that the relative error in [itex]\hat{b}[/itex] is less than 10%. On the other hand, the relative error in the first entry of [itex]\hat{b}[/itex] is [itex]\frac{0.14}{1}=0.14≥0.1[/itex].

    Now, suppose we solve the systems [itex]A\hat{x}=\hat{b}[/itex] and [itex]Ax=b[/itex] where [itex]A[/itex] is invertible. According to the literature,


    Where the norm of a matrix [itex]A[/itex] is defined to be [itex]\max\limits_{i} \sum\limits_{j} \left|a_{ij}\right|[/itex].

    If we know that the relative error in [itex]\hat{b}[/itex] is less than 10%, then we can put a bound on the relative error in [itex]\hat{x}[/itex]:


    But as shown above, this does not put a bound on the relative error in the individual entries of [itex]\hat{x}[/itex]. So my question is, what is the point of finding the relative error in the vector if we cannot use that to put a bound on the relative error of the individual entries? Maybe I'm misinterpreting something here?

  2. jcsd
Share this great discussion with others via Reddit, Google+, Twitter, or Facebook

Can you offer guidance or do you also need help?
Draft saved Draft deleted