suppose there is a vector field V on a manifold M(adsbygoogle = window.adsbygoogle || []).push({});

V generates a flow on M

suppose \gamma(t) is an integral curce in this flow

now there is another vector field W on M

why not define the lie derivative of W with respect to V as the limit of the divide

(W(\gamma+\delta \gamma)-W(\gamma))/\delta \gamma

here the difference is taken by components

i think this is very natural from our experience in the calculus course in undergraduate.

why we need to drag?

**Physics Forums | Science Articles, Homework Help, Discussion**

Dismiss Notice

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Defition of lie derivatives

**Physics Forums | Science Articles, Homework Help, Discussion**