Hi: More on Prelims:(adsbygoogle = window.adsbygoogle || []).push({});

We have a map f: S^3 -->S^3 ; S^3 is the 3-sphere , given by:

(x1,x2,x3,x4)-->(-x2,-x3,-x4,-x1).

We're asked to find its degree, and to determine if f is homotopic to the identity.

I computed that f^4 ( i.e., fofofof ) is the identity, and we have that degree is

multiplicative, so that deg(f)^4=1 , so that we can narrow the choices to degf=+/- 1.

Now, I know we can also compute the induced map on top homology, and see if f is

preserving- or reversing- orientation, but I cannot tell which it is; I am trying to

use a 4-simplex , and see if this map preserves or reverses the orientation, but

I cannot see it clearly.

Another choice I am thinking of using is that f , seen as a map from R^4 to itself,

is a linear map, so that we can calculate Det f , to see if f reverses or preserves

orientation, and then maybe argue that f restricted to the subspace S^3 (unfortunately,

S^3 is not a subspace of R^4 ) has the same effect of preserving/reversing

orientation. Any Ideas/Suggestions/Comments?

see well how to do that

**Physics Forums | Science Articles, Homework Help, Discussion**

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Degree of a Map

**Physics Forums | Science Articles, Homework Help, Discussion**