(adsbygoogle = window.adsbygoogle || []).push({}); Delta amplitude and "nabla amplitude"

Why all jacobi theory and all ellipitc integrals is based in ##\Delta(\theta) = \sqrt{1-m \sin(\theta)^2}## ?

You already think that this definition is just midle of history, cause' you can define other elementar function: [tex]\nabla(\theta) = \sqrt{1-m \cos(\theta)^2}[/tex] So, a "nabla amplitude", will imply in more interesting definitions:

if: [tex]\int_{0}^{\phi}\frac{d\theta}{\sqrt{1-m \sin(\theta)^2}}=u[/tex] thus: [tex]\int_{0}^{\phi}\frac{d\theta}{\sqrt{1-m \cos(\theta)^2}}=v[/tex] and so: [tex]\\ u=\int \frac{d\phi}{\Delta(\phi)} \;\;\;\Rightarrow \;\;\;\frac{du}{d\phi}=\frac{1}{\Delta(\phi)} \;\;\;\Rightarrow \;\;\;\frac{d\phi}{du} = \Delta(\phi) = dn(u) \;\;\;\Rightarrow \;\;\; \phi = \int dn(u) du \\ \\ \\ \\ v=\int \frac{d\phi}{\nabla(\phi)} \;\;\;\Rightarrow \;\;\;\frac{dv}{d\phi}=\frac{1}{\nabla(\phi)} \;\;\;\Rightarrow \;\;\;\frac{d\phi}{dv} = \nabla(\phi) = qn(v) \;\;\;\Rightarrow \;\;\; \phi = \int qn(v)dv[/tex]

And the implications continues... So, why the elliptic integrals are based only in the root square of a sine, why not exist definition based in the root square of a cosine too?

**Physics Forums | Science Articles, Homework Help, Discussion**

Dismiss Notice

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Delta amplitude and nabla amplitude

Can you offer guidance or do you also need help?

Draft saved
Draft deleted

**Physics Forums | Science Articles, Homework Help, Discussion**