# Delta derivative identity

#### ZStardust

Hello.

1. The problem statement, all variables and given/known data

I would like to solve the following:

$$$\int\limits_{ - \infty }^{ + \infty } {{\rm{d}}x\,f\left( x \right)\frac{{\rm{d}}}{{{\rm{d}}x}}\delta \left[ {a\left( {x - x_0 } \right)} \right]}$$$

The solution I found in a paper is:

$$$\int\limits_{ - \infty }^{ + \infty } {{\rm{d}}x\,f\left( x \right)\frac{{\rm{d}}}{{{\rm{d}}x}}\delta \left[ {a\left( {x - x_0 } \right)} \right]} = - a^{ - 2} \frac{{\rm{d}}}{{{\rm{d}}x}}f\left( {x_0 } \right)$$$

Also, there's a similar expression http://functions.wolfram.com/GeneralizedFunctions/DiracDelta/20/ShowAll.html" [Broken] (check the last equation).

2. Relevant equations

$$$\delta \left[ {a\left( {x - x_0 } \right)} \right] = \left| a \right|^{ - 1} \delta \left( {x - x_0 } \right)$$$

$$$\int\limits_{ - \infty }^{ + \infty } {{\rm{d}}x\,f\left( x \right)\frac{{\rm{d}}}{{{\rm{d}}x}}\delta \left( {x - x_0 } \right)} = - \frac{{\rm{d}}}{{{\rm{d}}x}}f\left( {x_0 } \right)$$$

3. The attempt at a solution

Representing the delta as a Dirac sequence and integrating by parts:

$$$\begin{array}{l} \int\limits_{ - \infty }^{ + \infty } {{\rm{d}}x\,\frac{{\rm{d}}}{{{\rm{d}}x}}\delta \left[ {a\left( {x - x_0 } \right)} \right]f\left( x \right)} = \mathop {\lim }\limits_{k \to \infty } \int\limits_{ - \infty }^{ + \infty } {{\rm{d}}x\,\frac{{\rm{d}}}{{{\rm{d}}x}}\psi _k^{} \left[ {a\left( {x - x_0 } \right)} \right]f\left( x \right)} \\ & = \left\{ \begin{array}{l} u = f\left( x \right) & {\rm{d}}u = \frac{{\rm{d}}}{{{\rm{d}}x}}f\left( x \right){\rm{d}}x \\ {\rm{d}}v = \frac{{\rm{d}}}{{{\rm{d}}x}}\psi _k^{} \left[ {a\left( {x - x_0 } \right)} \right]{\rm{d}}x & v = \psi _k \left[ {a\left( {x - x_0 } \right)} \right] \\ \end{array} \right. \\ & = \mathop {\lim }\limits_{k \to \infty } \left\{ {\left. {f\left( x \right)\psi _k \left[ {a\left( {x - x_0 } \right)} \right]} \right|_{ - \infty }^\infty - \int\limits_{ - \infty }^{ + \infty } {{\rm{d}}x\,\psi _k \left[ {a\left( {x - x_0 } \right)} \right]\frac{{\rm{d}}}{{{\rm{d}}x}}f\left( x \right)} } \right\} \\ & = - \int\limits_{ - \infty }^{ + \infty } {{\rm{d}}x\,\delta \left[ {a\left( {x - x_0 } \right)} \right]\frac{{\rm{d}}}{{{\rm{d}}x}}f\left( x \right)} \\ & = - \left| a \right|^{ - 1} \int\limits_{ - \infty }^{ + \infty } {{\rm{d}}x\,\delta \left( {x - x_0 } \right)\frac{{\rm{d}}}{{{\rm{d}}x}}f\left( x \right)} \\ & = - \left| a \right|^{ - 1} \frac{{{\rm{d}}f}}{{{\rm{d}}x}}\left( {x_0 } \right) \\ \end{array}$$$

Last edited by a moderator:
Related Calculus and Beyond Homework News on Phys.org

"Delta derivative identity"

### Physics Forums Values

We Value Quality
• Topics based on mainstream science
• Proper English grammar and spelling
We Value Civility
• Positive and compassionate attitudes
• Patience while debating
We Value Productivity
• Disciplined to remain on-topic
• Recognition of own weaknesses
• Solo and co-op problem solving