1. Limited time only! Sign up for a free 30min personal tutor trial with Chegg Tutors
    Dismiss Notice
Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

I Delta otential energy between two charge configurations

  1. Feb 13, 2017 #1
    Chapter 24, Question 61

    Given two configurations, ##C_1##, ##C_2## of ##N## point charges each, determine the smallest value of ##N## s.t. ##V_1>V_2##.

    ##C_1##:

    ##N## point charges are uniformly distributed on a ring s.t. the distance between adjacent electrons is constant

    ##C_2##:

    ##N-1## point charges are uniformly distributed on a ring s.t. the distance between adjacent electrons is constant and one charge is placed in the center of the ring.

    Approach I

    1. If we consider a gaussian surface inside the ring, ##E=0##. We know that the voltage at the center of the ring is $$V_\text{center}=\frac{Ne}{r}$$ and furthermore, because $V=\int E\circ ds$, $$V_\text{inside} = V_\text{center}$$
    2. From this previous result, $$U_1 = eV_\text{center} = \frac{N(N-1)e^2}{r}$$
    3. ##C_2##
    the configuration potential without the center electron is $$(1/2)(N-1)(N-2)\frac{e}{r}$$ The center electron adds ##(N-1)\frac{e}{r}## yielding $$U_2 = (1/2)(N-1)(N-2)\frac{e}{r} + (N-1)\frac{e}{r}$$
    4. Let ##k = \frac{e}{r}##, and, setting ##(N^2-N)k = (N^2-3N+2)k+(2N-2)k##
    $$\implies 0=0$$

    Approach II

    Let ##N## charges be arranged along a circle with radius ##R##. The position of an arbitrary particle at an angle ##\theta## relative to the positive direction of the x-axis is ##\vec{P}(\theta) = (R\cos\theta, R\sin\theta)##. Pick one charge located at angle $\theta = \theta_i$ and another particle located at ##\theta = \theta_j## relative to the positive direction of the x-axis. The distance between the two particles ##\vec{r}## is

    $$
    \begin{align}
    \vec{r} &= \|\vec{P}(\theta_j) - \vec{P}(\theta_i)\| \\
    &= \|(R\cos\theta_j, R\sin\theta_j) - (R\cos\theta_i, R\sin\theta_i) \\
    &= \|R(\cos\theta_j-\cos\theta_i, \sin\theta_j - \sin\theta_j)\|\\
    &= R\|(\cos\theta_j-\cos\theta_i, \sin\theta_j - \sin\theta_j)\| \\
    &= R \sqrt{
    \cos^2\theta_j -2 \cos\theta_j\cos\theta_i + \cos^2\theta_i \\
    + \sin^2\theta_j -2 \sin\theta_j \sin\theta_i + \sin^2\theta_i
    } \\
    &= R\sqrt{
    1-\sin^2\theta_j +1-\sin^2\theta_i + \sin^2\theta_j + \sin^2\theta_i \\
    -2(\cos\theta_j\cos\theta_i+ \sin\theta_j \sin\theta_i)
    }\\
    &= R\sqrt{
    2-2(\cos\theta_j \cos\theta_i + \sin\theta_j \sin\theta_i)
    }\\
    &=R\sqrt{2(1-\cos\theta_j \cos\theta_i - \sin\theta_j \sin\theta_i) } \\
    & = R\sqrt{2(1-\cos(\theta_j + \theta_i))}\\
    \therefore \vec{r} &= R\sqrt{2(1-\cos(\theta_j + \theta_i))}
    \end{align}
    $$

    Where

    $$
    \theta_k = k\Delta \theta \\
    \Delta\theta = \frac{2\pi}{N}
    $$

    We get

    $$
    \begin{aligned}
    \vec{r} =R\sqrt{2}\sqrt{1-\cos\left((i+j)\frac{2\pi}{N}\right)}
    \end{aligned}
    $$

    With this expression for ##\vec{r}##, we can write the net potential energy for particle ##j## along the circle with the equation assuming all particles have charges ##q##

    $$
    \begin{align}
    U_\text{particle i} & = \sum_{j=1, i \ne j}^{N}
    {
    \frac{q^2}{4\pi\epsilon_0R\sqrt{2(1-\cos(\theta_i + \theta_j))}}}\\
    & = \frac{q^2}{4\pi\epsilon_0R\sqrt{2}}\sum_{j=1, i \ne j}^{N}
    {
    \frac{1}{\sqrt{1-\cos(\theta_i + \theta_j)}}} \\
    & = \frac{q^2}{4\pi\epsilon_0R\sqrt{2}}\sum_{j=2}^{N}
    {
    \frac{1}{\sqrt{1-\cos(\theta_i + \theta_j)}}}
    \end{align}
    $$

    we set ##j_\text{initial} =2## which is equivalent to the conditions ##j=1, j\ne i##



    For concision, let

    $$
    L = \frac{q^2}{4\pi\epsilon_0R}
    $$

    Then net potential energy can be expressed as

    $$
    \begin{align}
    U(n)
    & = \frac{1}{2}\sum_i^{n}U_i \\
    & = \frac{L}{2} \sum_{i=1, j=2}^{n,n}
    {
    \frac{1}{\sqrt{2-2\cos(\Delta \theta(i+j-2))}}
    } \\
    &= \frac{nq^2}{8\pi\epsilon_0R}
    \sum_{j=1}^{n-1}{
    \frac{1}{\sqrt{2}\sqrt{1-\cos(j\Delta\theta))}}
    }\\
    &= \frac{nq^2}{8\pi\epsilon_0R}
    \sum_{j=1}^{n-1}{
    \frac{1}{\sqrt{2}\sqrt{1-\cos(j\frac{2\pi}{N}))}}
    }\\
    &= \frac{nq^2}{8\pi\epsilon_0R}
    \sum_{j=1}^{n-1}{
    \frac{1}{4\sin(\frac{j\pi}{N})}
    }\\
    &= \frac{nq^2}{32\pi\epsilon_0R}
    \sum_{j=1}^{n-1}{
    \csc\left(j\frac{\pi}{N}\right)
    } \\
    \end{align}
    $$

    For two configurations with ##N## charges we define the potential energies:

    $$
    U_1 = U(N) \\
    U_2 = U(N-1) + (N-1)L
    $$

    where the second term in the definition of ##U_2## determines the potential for the lone particle in the center.

    Now we solve for the ##N## at which ##U_1 = U_2##

    $$
    \begin{aligned}
    U_1 - U_2& = \Delta U \\
    &=N\frac{q^2}{32\pi\epsilon_0R}
    \sum_{j=1}^{n-1}{
    \csc\left(j\frac{\pi}{N}\right)
    }\\
    &+(1-N)\frac{q^2}{32\pi\epsilon_0R}
    \sum_{j=1}^{n-2}{
    \csc\left(j\frac{\pi}{N-1}\right)
    }\\
    & +(1-N)L
    \end{aligned}

    $$

    Which is really difficult to solve directly.
     
  2. jcsd
Know someone interested in this topic? Share this thread via Reddit, Google+, Twitter, or Facebook

Can you offer guidance or do you also need help?
Draft saved Draft deleted



Similar Discussions: Delta otential energy between two charge configurations
Loading...