How can a thin mirror show such vast depths?

In summary: A hologram, on the other hand, replay not only the intensity, but also the phase, or more accurately, the phase difference between the various objects being replayed. So when you shine light onto a hologram, it does not only reproduce the intensity, but also the phase difference between the various objects. When we view such light source, our two eyes and our optical nerve process these into various depth and perspective.This is something that has confused me for quiet some time.
  • #1
banerjeerupak
123
1
this is something that has confused me for quiet some time.

the mirror is just a few millimeters thick. then how is it that we can use it to see depths of metres and kilometers. what is it that enables a mirror to show greater depth than its own
 
Science news on Phys.org
  • #2
Can you try to explain it further?
 
  • #3
All it does is change the direction of light. It doesn't have any bearings on human perception of depth.

- Warren
 
  • #4
The perception of depth has little to do which reflection, rather, that you have 2 eyes spatially separated and a brain that combines the 2.
However, there are powerful illusions if you "mess" with nature.
For example, using an optical device that switches the left-eye view for the right(and vice-versa) a bizarre view is afforded.
Foreground becomes background, and concave indentations appear convex.
 
  • #5
but the reflection is what we see. it is coming from a two dimensional object. then how is it that we can see if someone is standing behind us. he should be see to be standing by my side. all the things that are to be seen should be seen in a single plane not in a 3D view. why does this not happen.

As Pallidin said, the foreground may become background, is this possible. has this been tested or is is just a hypothesis.
 
  • #7
There is one thing being overlooked here.

A "reflection" not only generally preserves the intensity of the light being reflected, but in the ordinary case it also preserves the phase (other than a pi shift) of that light.

Now, why is this important?

Note that in an ordinary picture that you see in a photograph or a book, that picture is "replaying" only the intensity of the content. When you shine light to it, that is what it is reflecting back into your two eyes. A hologram, on the other hand, replay not only the intensity, but also the phase, or more accurately, the phase difference between the various objects being replayed. So when you shine light onto a hologram, it does not only reproduce the intensity, but also the phase difference between the various objects. When we view such light source, our two eyes and our optical nerve process these into various depth and perspective.

The same thing occurs when visible light is being reflected off an ordinary plane mirror. The phase difference between the different objects are preserved upon reflection. Thus, your eyes can't tell the different (other than the left-right switching) that you are looking at the image from a mirror rather than directly at it.

Zz.
 
  • #8
banerjeerupak said:
but the reflection is what we see. it is coming from a two dimensional object. then how is it that we can see if someone is standing behind us. he should be see to be standing by my side. all the things that are to be seen should be seen in a single plane not in a 3D view. why does this not happen.

The light from the person reflects off two different points on the mirror and enters your two eyes at slightly different angles, meaning your eyes see the person at a slightly different place (you can test this by closing one eye alternately). Your brain is smart enough to tell that this means the object is located a certain distance away from you, but not smart enough to realize that the light coming to it has not traveled a straight path, but has rather been bent by the mirror. Thus you see the reflected world with full depth, but reversed right and left.Joe Andersen

Your Guide to Physics: http://physicsguide.blogspot.com
Train to end Stroke: http://myspace.com/traintoendstroke
Cheapskate - group buying discounts: http://groups.yahoo.com/group/cheapskate/
Freecycle - give away and get free stuff: http://groups.yahoo.com/group/freecycleboston/

jaanders@fas.harvard.edu
 
  • #9
ZapperZ said:
There is one thing being overlooked here...

When we view such light source, our two eyes and our optical nerve process these into various depth and perspective.

The same thing occurs when visible light is being reflected off an ordinary plane mirror. The phase difference between the different objects are preserved upon reflection. Thus, your eyes can't tell the different (other than the left-right switching) that you are looking at the image from a mirror rather than directly at it.
Good point. Along those lines, if you are standing 5 feet from a mirror and someone is standing 5 feet behind you, the fact that the light just bounces off the mirror means that the person doesn't just appear to be 15 feet away from you - the light actually traveled 15 feet to get to you and things like parallax are preserved.

So it is more "real" than, say, a photo.
 
  • #10
banerjeerupak said:
As Pallidin said, the foreground may become background, is this possible. has this been tested or is is just a hypothesis.

It has not only been tested, you can actually buy or simply build a device that uses 4 small mirrors that switch the left-eye view for the right and vice-versa. There was some university study somewhere that suggested than one should not do this for extended periods of time, as for some volunteers, the effect maintained for them for a short while even after the device was removed.
 
  • #11
The device is called a Pseudoscope. Very bizarre effect. I am tempted to build one. Here's one link if you are interested: http://pseudoscope.blogspot.com/

Also here: http://www.grand-illusions.com/pseudoscope.htm [Broken]
 
Last edited by a moderator:
  • #12
I'm feeling tempted to build it too!
 

What is the depth of a mirror?

The depth of a mirror refers to the distance between the front surface of the mirror and the back surface of the mirror.

Why is the depth of a mirror important?

The depth of a mirror is important because it affects the way light is reflected and the quality of the image produced by the mirror. A greater depth allows for a larger viewing angle and a sharper image.

How is the depth of a mirror measured?

The depth of a mirror is typically measured by placing the mirror on a flat surface and measuring the distance between the surface and the back of the mirror with a ruler or measuring tape.

What factors can affect the depth of a mirror?

The depth of a mirror can be affected by the type and thickness of the reflective material used, the curvature of the mirror, and the angle at which the mirror is mounted or placed.

Is there an ideal depth for a mirror?

There is no one ideal depth for a mirror, as it depends on the intended use and personal preference. However, a depth of at least 1 inch is typically recommended for a functional mirror that produces a clear and accurate reflection.

Similar threads

Replies
5
Views
1K
Replies
5
Views
1K
Replies
20
Views
3K
Replies
3
Views
3K
Replies
35
Views
4K
  • Other Physics Topics
Replies
7
Views
2K
Replies
26
Views
4K
  • Electrical Engineering
Replies
9
Views
1K
Back
Top