1. Not finding help here? Sign up for a free 30min tutor trial with Chegg Tutors
    Dismiss Notice
Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

Deriative crazy

  1. Dec 8, 2007 #1
    1. The problem statement, all variables and given/known data

    Lets define a function f on an open interval ]0,1[ by setting

    [tex] f(x) = \int_{1/2}^\sqrt{x}} tln\frac{1+t^2}{1-t^2}dt [/tex]

    Calculate the first three deriatives f'(x), f''(x) and f'''(x)



    2. Relevant equations

    Product and Quotent rule.


    3. The attempt at a solution

    Ok. First of all. Does that open interval ]0,1[ have any meaning to the calculations?

    I took [tex] f'(x) = \sqrt{x} ln \frac{1+x}{1-x}dx - \frac{1}{2} ln \frac{1+\sqrt{1/2}}{1-\sqrt{1/2}} [/tex]

    Is that the right way to do it ?
     
    Last edited: Dec 8, 2007
  2. jcsd
  3. Dec 8, 2007 #2

    Dick

    User Avatar
    Science Advisor
    Homework Helper

    That's right. The integrand is undefined at 1 and 0. Hence the restriction to (0,1).
     
  4. Dec 8, 2007 #3

    Dick

    User Avatar
    Science Advisor
    Homework Helper

    Ooops. Correction. Your constant part shouldn't be there. If the antiderivative of f(t) is F(t), the integral from a to x is F(x)-F(a). The derivative of that is just F'(x)=f(x). The a part disappears.
     
  5. Dec 8, 2007 #4
    Jesus Christ. Of course. x cannot be 0 because of sqrt(x) and not 1 because of the (1-x) thing.

    I just thougt that it was ment to trick you to say "lets define on an open interval...."

    Clearly it did in my case.

    Thanks Dick.

    [tex] f ' (x) = \sqrt{x}ln\frac{1+x}{1-x} - CONSTANT[/tex]

    d/dx constant = 0


    [tex] d/dx \sqrt{x} = \frac {1}{2\sqrt{x}} [/tex]


    [tex] u = \frac{1+x}{1-x} [/tex] and [tex] u ' = \frac{(1-x)+(1+x)}{(1-x)^2} = \frac {2}{(1-x)^2} [/tex]

    [tex] g(u) = ln(u) [/tex] and [tex] g ' (u) = \frac{1}{x} [/tex]

    [tex] d/dx ln\frac{1+x}{1-x} = \frac{1}{x} \frac{2}{(x-1)^2} = \frac{2}{x(1-x)^2} [/tex]

    so...


    [tex] f '' (x) = \frac {ln\frac{1+x}{1-x}}{2\sqrt{x}} + \frac{2\sqrt{x}}{x(1-x)^2} [/tex]

    Is this correct? And if it is, can I simplify the result ?
     
    Last edited: Dec 8, 2007
  6. Dec 8, 2007 #5

    Dick

    User Avatar
    Science Advisor
    Homework Helper

    As I explained in my last note drop the constant in f'(x). f(x) COULD be defined on [0,1), but they chose not to (it is defined at 0 - I was thinking they had a log(x) in there somewhere). I'm not getting the same thing as you when I differentiate the log. But you might find it easier to handle the log by writing log((1+x)/(1-x))=log(1+x)-log(1-x).
     
  7. Dec 8, 2007 #6
    Jeez if i do that with the log I will be forever doing this. Or maybe not.

    EDIT:

    [tex] f ' (x) = \sqrt{x}ln(1+x) - \sqrt{x}ln(1-x) [/tex]

    [tex] d/dx \sqrt{x} ln(1+x) = \frac{ln(1+x)}{2\sqrt{x}} + \frac{\sqrt{x}}{1+x}[/tex]

    [tex] d/dx \sqrt{x}ln(1-x) = \frac{ln(1-x)}{2\sqrt{x}} + \frac{\sqrt{x}}{1-x} [/tex]

    so

    [tex] f '' (x) = (\frac{ln(1+x)}{2\sqrt{x}} + \frac{\sqrt{x}}{1+x}) - (\frac{ln(1-x)}{2\sqrt{x}} + \frac{\sqrt{x}}{1-x}) [/tex]

    and for f'''(x) I just go quatant crazy.
     
    Last edited: Dec 8, 2007
  8. Dec 8, 2007 #7
    [tex] f ''' (x) = \frac{\frac{2\sqrt{x}}{(1+x)} - \frac{ln(1+x)}{\sqrt{x}}}{4x} [/tex]

    Correct? No, its incorrect....
     
    Last edited: Dec 8, 2007
  9. Dec 8, 2007 #8

    Dick

    User Avatar
    Science Advisor
    Homework Helper

    You are forgetting a parenthesis in the FIRST derivative - both logs are multiplied by sqrt(x). But I just meant to differentiate the log by differentiating log(1+x)-log(1-x) -> 1/(1+x)+1/(1-x) -> 2/(1-x^2).
     
  10. Dec 8, 2007 #9
    [tex] f ' (x) = \sqrt{x}ln(1+x) - \sqrt{x}ln(1-x) [/tex]

    [tex] d/dx \sqrt{x} ln(1+x) = \frac{ln(1+x)}{2\sqrt{x}} + \frac{\sqrt{x}}{1+x}[/tex]

    [tex] d/dx \sqrt{x}ln(1-x) = \frac{ln(1-x)}{2\sqrt{x}} + \frac{\sqrt{x}}{1-x} [/tex]

    so

    [tex] f '' (x) = (\frac{ln(1+x)}{2\sqrt{x}} + \frac{\sqrt{x}}{1+x}) - (\frac{ln(1-x)}{2\sqrt{x}} + \frac{\sqrt{x}}{1-x}) [/tex]
     
  11. Dec 8, 2007 #10

    Dick

    User Avatar
    Science Advisor
    Homework Helper

    You have a sign error on the last term, the derivative of log(1-x)=(-1)/(1-x). One more derivative to go.
     
  12. Dec 8, 2007 #11
    Ok, I think I got it now. And yes of course there is a minus sign :)

    I just put the result I got

    [tex] f ''' (x) = (\frac{\frac{2\sqrt{x}}{1+x}-\frac{ln(1+x)}{\sqrt{x}}}{4x} + \frac{\frac{1+x}{2\sqrt{x}}-\sqrt{x}}{(1+x)^2})-(\frac{\frac{2\sqrt{x}}{1-x}+\frac{ln(1-x}{\sqrt{x}}}{4x} - \frac{\frac{1-x}{2\sqrt{x}} + \sqrt{x}}{(1-x)^2})[/tex]
     
  13. Dec 8, 2007 #12

    Dick

    User Avatar
    Science Advisor
    Homework Helper

    Hope you're right. It's kind of hopeless to check something like that. Even if you find something, it's just as likely to be a TeX error as anything else. I know you basically know what you are doing.
     
  14. Dec 8, 2007 #13
    Yes, but thanks alot for the help. But what's the meaning of finding f'''(x)

    f'(x) tells you where the CP's are ans so..

    f''(x) tellst you where the lines turn

    but what the hell does f'''(x) do other then robbing you valiable time?
     
  15. Dec 8, 2007 #14

    Dick

    User Avatar
    Science Advisor
    Homework Helper

    It tells you where the second derivative is increasing and decreasing. Which is not something you generally need when sketching a graph. Here it's just for practice (i.e. robbing you of valuable time).
     
Know someone interested in this topic? Share this thread via Reddit, Google+, Twitter, or Facebook

Have something to add?



Similar Discussions: Deriative crazy
  1. Deriatives problem (Replies: 2)

Loading...