Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

Derivation af oa product

  1. Nov 13, 2011 #1

    georg gill

    User Avatar
    Gold Member

    What do I do wrong here:

    [tex]\frac{f(x+h)g(x+h)-f(x)g(x)}{x+h-x}=\frac{f(x+h)g(x+h)}{h}-\frac{f(x)g(x)}{h}=\frac{f(x+h)}{h}g(x+h)-\frac{f(x)}{h}g(x)=\lim_{h \to 0}\frac{f(x+h)}{h}\lim_{h \to 0}g(x+h)-\lim_{h \to 0}\frac{f(x)}{h}g(x)[/tex]

    [tex]\lim_{h \to 0}g(x+h)=g(x)[/tex]

    [tex]\lim_{h \to 0}\frac{f(x+h)}{h}\lim_{h \to 0}g(x+h)-\lim_{h \to 0}\frac{f(x)}{h}g(x)=\lim_{h \to 0}\frac{f(x+h)}{h}g(x)-\lim_{h \to 0}\frac{f(x)}{h}g(x)=(\lim_{h \to 0}\frac{f(x+h)}{h}-\lim_{h \to 0}\frac{f(x)}{h})g(x)=(\lim_{h \to 0}\frac{f(x+h)-f(x)}{h})g(x)=\frac{df}{dx}g(x)[/tex]

    I know how they derieve the derivation of a product:


    But how come what I did above does not work?
    Last edited: Nov 13, 2011
  2. jcsd
  3. Nov 13, 2011 #2


    User Avatar
    Staff Emeritus
    Science Advisor
    Education Advisor
    2016 Award

    You did something like

    [tex]\lim_{x\rightarrow a}{f(x)g(x)+h(x)}=\lim_{x\rightarrow a}{f(x)}\lim_{x\rightarrow a}{g(x)}+\lim_{x\rightarrow a}{h(x)}[/tex]

    But this is not true. You can't do that.

    It is ONLY true if [itex]\lim_{x\rightarrow a}{f(x)}[/itex], [itex]\lim_{x\rightarrow a}{g(x)}[/itex] AND [itex]\lim_{x\rightarrow a}{h(x)}[/itex] converge. In your example, you don't have that. For example

    [tex]\lim_{h\rightarrow 0}{\frac{f(x)}{h}}[/tex]

    does not converge.
Know someone interested in this topic? Share this thread via Reddit, Google+, Twitter, or Facebook

Similar Discussions: Derivation af oa product