- #1
- 12
- 0
Hi,
I need help on this:
[tex] y = ln \frac{\sqrt{3}-\sqrt{2} cos x}{\sqrt{3} +\sqrt{2} cos x}[/tex]
find [tex]y'[/tex]
I know that answer should be: [tex] \frac{2\sqrt6 \ sinx}{3-2cos^2 x} [/tex] , but can't find it:
[tex]
y'= ( ln \frac{\sqrt{3}-\sqrt{2} cos x}{\sqrt{3} +\sqrt{2} cos x} )' =[/tex] [tex]
\cfrac{1}{ \cfrac{\sqrt{3}-\sqrt{2} cos x} { \sqrt{3} +\sqrt{2} cos x }}\
(\frac{\sqrt{3}-\sqrt{2} cos x} {\sqrt{3} +\sqrt{2} cos x} )' [/tex] [tex] \
=\ \frac{\sqrt{3}+\sqrt{2} cos x}{\sqrt{3} -\sqrt{2} cos x}\
(\ \frac{(\sqrt{3}-\sqrt{2} cos x)' (\sqrt{3} +\sqrt{2} cos x) - (\sqrt{3}-\sqrt{2} cos x) (\sqrt{3} +\sqrt{2} cos x)' }{(\sqrt{3}+\sqrt{2} cos x)^2}\ )=[/tex]
[tex]= \frac{\sqrt{3}+\sqrt{2} cos x}{\sqrt{3} -\sqrt{2} cos x} \
( \ ( \dfrac{{\dfrac{1}{2\sqrt3}- \dfrac{cosx}{2\sqrt2}+\sqrt{2}sinx)(\sqrt{3}+\sqrt{2} cos x)-(\sqrt{3}-\sqrt{2} cos x) \ (\dfrac{1}{2\sqrt3}+ \dfrac{cosx}{2\sqrt2}-\sqrt{2}sinx) }}
{ (\sqrt{3}+\sqrt{2} cos x)^2 })\ )
[/tex]
[tex]
= \frac{\sqrt{3}+\sqrt{2} cos x}{\sqrt{3} -\sqrt{2} cos x}
(\frac{1}{2\sqrt3}-\frac{cosx}{2\sqrt2} +\sqrt2sin x +\frac{1}{2\sqrt3}+\frac{cosx}{2\sqrt2}-\sqrt2sin x)
[/tex]
[tex]
=\frac{\sqrt{3}+\sqrt{2} cos x}{\sqrt{3} -\sqrt{2} cos x} \ \frac{1}{\sqrt3}
[/tex]
I need help on this:
Homework Statement
[tex] y = ln \frac{\sqrt{3}-\sqrt{2} cos x}{\sqrt{3} +\sqrt{2} cos x}[/tex]
find [tex]y'[/tex]
The Attempt at a Solution
I know that answer should be: [tex] \frac{2\sqrt6 \ sinx}{3-2cos^2 x} [/tex] , but can't find it:
[tex]
y'= ( ln \frac{\sqrt{3}-\sqrt{2} cos x}{\sqrt{3} +\sqrt{2} cos x} )' =[/tex] [tex]
\cfrac{1}{ \cfrac{\sqrt{3}-\sqrt{2} cos x} { \sqrt{3} +\sqrt{2} cos x }}\
(\frac{\sqrt{3}-\sqrt{2} cos x} {\sqrt{3} +\sqrt{2} cos x} )' [/tex] [tex] \
=\ \frac{\sqrt{3}+\sqrt{2} cos x}{\sqrt{3} -\sqrt{2} cos x}\
(\ \frac{(\sqrt{3}-\sqrt{2} cos x)' (\sqrt{3} +\sqrt{2} cos x) - (\sqrt{3}-\sqrt{2} cos x) (\sqrt{3} +\sqrt{2} cos x)' }{(\sqrt{3}+\sqrt{2} cos x)^2}\ )=[/tex]
[tex]= \frac{\sqrt{3}+\sqrt{2} cos x}{\sqrt{3} -\sqrt{2} cos x} \
( \ ( \dfrac{{\dfrac{1}{2\sqrt3}- \dfrac{cosx}{2\sqrt2}+\sqrt{2}sinx)(\sqrt{3}+\sqrt{2} cos x)-(\sqrt{3}-\sqrt{2} cos x) \ (\dfrac{1}{2\sqrt3}+ \dfrac{cosx}{2\sqrt2}-\sqrt{2}sinx) }}
{ (\sqrt{3}+\sqrt{2} cos x)^2 })\ )
[/tex]
[tex]
= \frac{\sqrt{3}+\sqrt{2} cos x}{\sqrt{3} -\sqrt{2} cos x}
(\frac{1}{2\sqrt3}-\frac{cosx}{2\sqrt2} +\sqrt2sin x +\frac{1}{2\sqrt3}+\frac{cosx}{2\sqrt2}-\sqrt2sin x)
[/tex]
[tex]
=\frac{\sqrt{3}+\sqrt{2} cos x}{\sqrt{3} -\sqrt{2} cos x} \ \frac{1}{\sqrt3}
[/tex]