- #1
- 28
- 0
I am doing my calculus homework and two problems are holding me up.
The first says:
Using one-sided derivatives, show that the function f(x) =
x^3, x_<_1
3x, x>1
does not have a derivative at x=1
Now it is painfully obvious that the function is not continuous at x=1. however, i am not entirely sure that is the answer that the book wants. the slopes from both sides seem to be 3, so how can it not have a derivative (aside from the continuity issue)? A similar (but with continuity) problem follows:
Secondly (i will try to answer the ones i have gotten so far):
let f(x) =
x^2, x_<_1
2x, x>1
a) find f'(x) for x<1......i think this is 2x
b) find f'(x) for x>1......2
c) find lim (x-->1-) f'(x)....2
d) find lim (x-->1+) f'(x)....2
e) does lim (x-->1) f'(x) exist? explain
f) use the def to find the left-hand derivative of f at x=1 if it exists...same as (c)=2
g) use the def...right-hand deriv...same as (d)=2
h) does f'(1) exist? explain
according to the rules of derivatives, if the left and right-hand derivatives are the same at a point, then that point has a derivative (assuming continuous). however, it seems to me that, at x=1, there would be a bit of a "jagged edge," somewhat like an absolute value point. therefore, how could a derivative be found?
thanks in advance. feel free to tell me i am horribly wrong in all aspects of my answer.
The first says:
Using one-sided derivatives, show that the function f(x) =
x^3, x_<_1
3x, x>1
does not have a derivative at x=1
Now it is painfully obvious that the function is not continuous at x=1. however, i am not entirely sure that is the answer that the book wants. the slopes from both sides seem to be 3, so how can it not have a derivative (aside from the continuity issue)? A similar (but with continuity) problem follows:
Secondly (i will try to answer the ones i have gotten so far):
let f(x) =
x^2, x_<_1
2x, x>1
a) find f'(x) for x<1......i think this is 2x
b) find f'(x) for x>1......2
c) find lim (x-->1-) f'(x)....2
d) find lim (x-->1+) f'(x)....2
e) does lim (x-->1) f'(x) exist? explain
f) use the def to find the left-hand derivative of f at x=1 if it exists...same as (c)=2
g) use the def...right-hand deriv...same as (d)=2
h) does f'(1) exist? explain
according to the rules of derivatives, if the left and right-hand derivatives are the same at a point, then that point has a derivative (assuming continuous). however, it seems to me that, at x=1, there would be a bit of a "jagged edge," somewhat like an absolute value point. therefore, how could a derivative be found?
thanks in advance. feel free to tell me i am horribly wrong in all aspects of my answer.