Derivative of projectile parametric y-component?


I'm looking for the derivative of the projectile parametric y-component?

The y component is:

y = (vi/k)(1-e^-kt)(sin a) + (g/k^2)(1 - kt - e^-kt)

I seem to be doing something wrong and my derivative isnt working out, I just want to check it against the final answer to see where I am going wrong.




Staff Emeritus
Science Advisor
Gold Member
I get
dy/dt = Vie-ktsin(a)+g(e-kt-1)/k
Yep, that's it. Thanks, Integral.

I forgot d/dx [ e^u ] is e^u * du/dx

Ah, the devil is in the details! Now to step two, how to solve it? I logged both sides, used the power rule and everything else I could think of, but it is not working out. Any other suggestions beside logging?

[Edited for spelling mistake]
No ideas? :(


Science Advisor
What do you mean by "solve it"?? Presumably you don't mean "How did you get that answer" because you said "Yep, that's it". What exactly do you want to do with the derivative?
Ooops, sorry.

Im settng the derivative to zero and solving for t.
The first term contains an exp(-kt). Expand out the second term into two seperate terms, one of which will contain the same exp(-kt) factor. Combine terms containing the exponential, move everything else over to the other side and once the exponential is isolated, then take the natural log of both sides.

I got something like

t = (-1/k)*ln[(g/k)*(Vi*sin(a)+g/k)^(-1)]
Last edited:
Thanks, Futz. I was combining the exponentials wrong.

Here it is solved for t: [Broken]
Last edited by a moderator:

Want to reply to this thread?

"Derivative of projectile parametric y-component?" You must log in or register to reply here.

Physics Forums Values

We Value Quality
• Topics based on mainstream science
• Proper English grammar and spelling
We Value Civility
• Positive and compassionate attitudes
• Patience while debating
We Value Productivity
• Disciplined to remain on-topic
• Recognition of own weaknesses
• Solo and co-op problem solving

Latest threads