1. Limited time only! Sign up for a free 30min personal tutor trial with Chegg Tutors
    Dismiss Notice
Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

Homework Help: Derivative of x to the x

  1. Feb 12, 2007 #1
    1. The problem statement, all variables and given/known data

    I am required to find the derivative of x^x using the differance quotient

    2. Relevant equations


    3. The attempt at a solution

    TI-89 gives (lnx+1)x^x I can't figure out how to get there
  2. jcsd
  3. Feb 12, 2007 #2
    Without the derivative definition, ln both sides, so:

    [tex]\frac{1}{y}.\frac{dy}{dx} = 1.ln(x) + x.\frac{1}{x}[/tex]
    [tex]\frac{dy}{dx} = y[ln(x) + 1][/tex]
    [tex]\frac{dy}{dx} = x^x(ln(x) + 1) [/tex]
  4. Feb 13, 2007 #3


    User Avatar
    Science Advisor

    I can't imagine there being any reasonable way to use the "difference quotient" to determine the derivative of xx. You must have a really evil teacher!
  5. Feb 14, 2007 #4


    User Avatar
    Science Advisor
    Homework Helper

    Either this is unreasonable, or your imagination really needs to see more:

    [tex] x^x =e^{x\ln x} [/tex]

    [tex] \lim_{h\rightarrow 0} \frac{(x+h)^{(x+h)}-x^x}{h} =\lim_{h\rightarrow 0} \frac{e^{(x+h)\ln(x+h)}-e^{x\ln x}}{h}=\lim_{h\rightarrow 0}\frac{e^{(x+h)\ln\left(x\left(1+\frac{h}{x}\right)\right)}-e^{x\ln x}}{h}[/tex]

    [tex] =\lim_{h\rightarrow 0} \frac{e^{x\ln x}e^{h\ln x}e^{x\ln\left(1+\frac{h}{x}\right)}e^{h\ln\left(1+\frac{h}{x}\right)}-e^{x\ln x}}{h} [/tex]

    [tex] =x^{x}\lim_{h\rightarrow 0}\frac{e^{h\ln x}e^{x\ln\left(1+\frac{h}{x}\right)}e^{h\ln\left(1+\frac{h}{x}\right)}-1}{h}\cdot \frac{h\ln x+x\ln\left(1+\frac{h}{x}\right)+h\ln\left(1+\frac{h}{x}\right)}{h\ln x+x\ln\left(1+\frac{h}{x}\right)+h\ln\left(1+\frac{h}{x}\right)} [/tex]

    [tex] =x^{x}\left[\ln x+x\lim_{h\rightarrow 0}\frac{\ln\left(1+\frac{h}{x}\right)}{h}+\lim_{h\rightarrow 0}\ln\left(1+\frac{h}{x}\right)\right] [/tex]

    [tex] =x^x \left\{\ln x+x\ln \lim_{h\rightarrow 0}\left[\left(1+\frac{h}{x}\right)^{\frac{x}{h}}\right]^{\frac{1}{x}}\right\} [/tex]

    [tex] =x^x \left(\ln x +1\right) [/tex]
    Last edited: Feb 14, 2007
  6. Feb 15, 2007 #5
    wow .
  7. Feb 15, 2007 #6


    User Avatar
    Homework Helper

    Whoa. :bugeye:
    Or somewhat easier. That's a little bit messy methinks: o:)
    [tex](x ^ x)' = (e ^ {x \ln (x)})' = \lim_{h \rightarrow 0} \frac{e ^ {(x + h) \ln (x + h)} - e ^ {x \ln (x)}}{h}[/tex]

    [tex]= \lim_{h \rightarrow 0} \left( \frac{e ^ {(x + h) \ln (x + h)} - e ^ {x \ln (x)}}{(x + h) \ln (x + h) - x \ln x} \times \frac{(x + h) \ln (x + h) - x \ln x}{h} \right)[/tex]

    [tex]= e ^ {x \ln (x)} \left( \lim_{h \rightarrow 0} \frac{x \ln (1 + \frac{h}{x}) + h \ln (x + h)}{h} \right)[/tex] [due to: (eu)'u = eu]

    [tex]= x ^ x \left\{ \lim_{h \rightarrow 0} \left[ x \ln \left( \left( 1 + \frac{h}{x} \right) ^ {\frac{x}{h}} \right) ^ {\frac{1}{x}} \right] + \ln (x) \right\}[/tex]

    [tex]= x ^ x (1 + \ln (x))[/tex]
    Last edited: Feb 15, 2007
  8. Aug 21, 2009 #7
    Since the original equation is x^x and never a division quotient, one can not apply that rule. Here is the alternative proof.

    Attached Files:

  9. Aug 22, 2009 #8
    "Difference quotient" means this:
    so the assignment was to use the definition of derivative that involves this.
  10. Aug 23, 2009 #9
    An answer is attached in PDF

    Attached Files:

Share this great discussion with others via Reddit, Google+, Twitter, or Facebook