Derivatives of natural logs and exponents

  • #1

Main Question or Discussion Point

The problem I have is to find the derivative of the function:

f(x) = (ln x)^x

I know the derivative of ln x is 1/x, but the exponent is throwing me off. Can anyone offering any help? Thanks alot
 

Answers and Replies

  • #2
1,569
1
[tex]a^{b}=e^{b\ln a}[/tex]

so [tex]\left( \ln x\right) ^{x}=e^{x\ln \left( \ln x\right) }[/tex]. now use product and chain rules.
 
Last edited:
  • #3
841
1
Another (very similar) approach is to take the log of both sides before you take the derivative.. use the chain rule to write d(ln(f(x))/dx in terms of df/dx, and solve for df/dx.
 
  • #4
Originally posted by phoenixthoth
[tex]a^{b}=e^{b\ln a}[/tex]

so [tex]\left( \ln x\right) ^{x}=e^{x\ln \left( \ln x\right) }[/tex]. now use product and chain rules.
Would I then have to substitute? I'm still not completely following... Thanks again
 
Last edited:
  • #5
1,569
1
as long as your answer has only [tex]x[/tex]'s in it, it should be ok. you could simplify the [tex]e^{x\ln \left( \ln x\right) }[/tex] back to [tex]\left( \ln x\right) ^{x}[/tex] if you want.
 
  • #6
would the derivative of (ln x)^x be:

xe^(1/x) ??

i don't know how to use the power and chain rule on e^xln(ln x)
 
  • #7
1,569
1
we have [tex]y=e^{x\ln \left( \ln x\right) }[/tex].

this can be written as [tex]y=e^{u}[/tex] where [tex]u=x\ln \left( \ln x\right) [/tex].

the chain rule is that [tex]\frac{dy}{dx}=\frac{dy}{du}\frac{du}{dx}[/tex].

[tex]\frac{dy}{du}=e^{u}[/tex]. to find [tex]\frac{du}{dx}[/tex], note that [tex]u[/tex] is the
product of [tex]x[/tex] and [tex]\ln \left( \ln x\right) [/tex].

[tex]\frac{du}{dx}=\left( \frac{d}{dx}x\right) \ln \left( \ln x\right) +x\frac{d
}{dx}\ln \left( \ln x\right) [/tex]. [tex]\frac{d}{dx}x=1[/tex] and to find [tex]\frac{d}{dx}
\ln \left( \ln x\right) [/tex], it may be useful to write [tex]v=\ln w[/tex] where [tex]w=\ln x
[/tex].

[tex]\frac{d}{dx}\ln \left( \ln x\right) =\frac{dv}{dx}=\frac{dv}{dw}\frac{dw}{dx
}.[/tex]

[tex]\frac{dv}{dw}=\frac{1}{w}[/tex] and [tex]\frac{dw}{dx}=\frac{1}{x}[/tex]. hence [tex]\frac{d
}{dx}\ln \left( \ln x\right) =\frac{1}{w}\frac{1}{x}=\frac{1}{\ln x}\frac{1}{
x}=\frac{1}{x\ln x}[/tex].

putting this back into the most recent expression for [tex]\frac{du}{dx}[/tex], we
get [tex]\frac{du}{dx}=1\cdot \ln \left( \ln x\right) +x\left( \frac{1}{x\ln x}
\right) =\ln \left( \ln x\right) +\frac{1}{\ln x}[/tex].

putting this back into the most recent expression for [tex]\frac{dy}{dx}[/tex], we
get [tex]\frac{dy}{dx}=e^{u}\left( \ln \left( \ln x\right) +\frac{1}{\ln x}
\right) =e^{x\ln \left( \ln x\right) }\left( \ln \left( \ln x\right) +\frac{1
}{\ln x}\right) [/tex].

since [tex]\left( \ln x\right) ^{x}=e^{x\ln \left( \ln x\right) }[/tex], we get [tex]
\frac{dy}{dx}=e^{x\ln \left( \ln x\right) }\left( \ln \left( \ln x\right) +
\frac{1}{\ln x}\right) =\left( \ln x\right) ^{x}\left( \ln \left( \ln
x\right) +\frac{1}{\ln x}\right) [/tex]. either the middle or right side of this equation may be acceptable.
 
Last edited:
  • #8
I understand what you wrote, but I just can't figure out how you turned (ln x)^x into e^xln(ln x)

Please elaborate. Otherwise, everything else has been very helpful.
 
  • #9
1,569
1
it's based on the property [tex]e^{\ln a}=a[/tex]. if we raise both sides to the [tex]b[/tex] power, we get [tex]\left( e^{\ln a}\right) ^{b}=a^{b}[/tex] which becomes [tex]a^{b}=e^{b\ln a}[/tex]. in this case, [tex]a=\ln x[/tex] and [tex]b=x[/tex].
 
Last edited:

Related Threads for: Derivatives of natural logs and exponents

  • Last Post
Replies
7
Views
6K
Replies
3
Views
1K
  • Last Post
Replies
3
Views
23K
  • Last Post
Replies
9
Views
6K
  • Last Post
Replies
1
Views
35K
  • Last Post
Replies
18
Views
4K
  • Last Post
Replies
6
Views
10K
Top