Derive a simple curl identity

  • Thread starter Hiero
  • Start date
  • #1
Hiero
322
68
Homework Statement:
Simplify ##\nabla \times ( a\nabla b)##
Relevant Equations:
##\nabla\times \vec V = \epsilon_{ijk}\frac{\partial V_k}{\partial x_j}\hat e_i##
##\nabla s = \frac{\partial s}{\partial x_i}\hat e_i##
Attempt:

$$\nabla \times ( a\nabla b) = \epsilon_{ijk}\frac{\partial}{\partial x_j}(a\frac{\partial b}{\partial x_k})\hat e_i$$ $$ = \epsilon_{ijk}\big(\frac{\partial a}{\partial x_j}\frac{\partial b}{\partial x_k}+a\frac{\partial b}{\partial x_j\partial x_k}\big)\hat e_i$$ $$= \nabla a \times \nabla b + \text{(final term)}$$

That “final term” (a triple sum) should be the zero vector, but I cannot see how. Maybe I messed up elsewhere.

Thanks.
 

Answers and Replies

  • #2
pasmith
Homework Helper
2022 Award
2,591
1,195
Well, [itex]\epsilon_{ijk} = -\epsilon_{ikj}[/itex] but [itex]\partial_j\partial_kb = \partial_k\partial_jb[/itex] so [tex]
\epsilon_{ijk}\partial_j\partial_kb = -\epsilon_{ikj}\partial_k\partial_jb.[/tex] But [itex]j[/itex] and [itex]k[/itex] are dummy indices, so we can relabel them on the right hand side ...
 
  • #3
Hiero
322
68
Well, [itex]\epsilon_{ijk} = -\epsilon_{ikj}[/itex] but [itex]\partial_j\partial_kb = \partial_k\partial_jb[/itex] so [tex]
\epsilon_{ijk}\partial_j\partial_kb = -\epsilon_{ikj}\partial_k\partial_jb.[/tex] But [itex]j[/itex] and [itex]k[/itex] are dummy indices, so we can relabel them on the right hand side ...
That’s a very nice way to show it is zero. The last step (after relabeling) is that ##[x=-x] \implies [x=0]##
I have to admit it seems magical to use this property ignoring the invisible nested summation.

Basically though, each component cancels out in pairs by virtue of the two properties you mentioned:
Well, [itex]\epsilon_{ijk} = -\epsilon_{ikj}[/itex] but [itex]\partial_j\partial_kb = \partial_k\partial_jb[/itex]
 
  • #4
pasmith
Homework Helper
2022 Award
2,591
1,195
Alternatively, [tex]\nabla \times (a\mathbf{v}) = (\nabla a) \times \mathbf{v} + a \nabla \times \mathbf{v}[/tex] and if [itex]\mathbf{v}[/itex] is a gradient then its curl is zero (which follows from the observation in my earlier post).
 

Suggested for: Derive a simple curl identity

Replies
2
Views
589
Replies
5
Views
671
Replies
1
Views
462
  • Last Post
Replies
3
Views
1K
  • Last Post
Replies
23
Views
602
Replies
5
Views
867
Replies
0
Views
333
Replies
6
Views
404
  • Last Post
Replies
16
Views
491
  • Last Post
Replies
3
Views
480
Top