- #1
- 676
- 29
The following derives the relation that for a blackbody radiation the energy density is proportional to the energy emitted per unit area over unit time.
The average energy density ##d\psi## is obtained by dividing the radiant energy ##dE## received by the surface ##dB## in 1 second by the cylindrical volume ##dV## occupied by the radiation in 1 second.
I don't understand why ##d\psi## is uniform anywhere inside the cylinder, in particular, at points near the surface ##dS##. At a point far away from ##dS##, the point is always the same distance ##\rho## away from every part of ##dS##. But this is not true for a point near ##dS##. The point would be closer to some parts of ##dS##. Then the energy density ##d\psi## at the point should not be uniform but vary depending on how far the point is from the center of the surface ##dS##.
The average energy density ##d\psi## is obtained by dividing the radiant energy ##dE## received by the surface ##dB## in 1 second by the cylindrical volume ##dV## occupied by the radiation in 1 second.
I don't understand why ##d\psi## is uniform anywhere inside the cylinder, in particular, at points near the surface ##dS##. At a point far away from ##dS##, the point is always the same distance ##\rho## away from every part of ##dS##. But this is not true for a point near ##dS##. The point would be closer to some parts of ##dS##. Then the energy density ##d\psi## at the point should not be uniform but vary depending on how far the point is from the center of the surface ##dS##.