(adsbygoogle = window.adsbygoogle || []).push({}); 1. The problem statement, all variables and given/known data

Find a,b,c, and d such that the cubic f(x)=[tex]ax^{3}+bx^{2}+cx+d [/tex]satisfies the indicated conditions.

Relative maximum (3,3)

Relative minimum (5,1)

Inflection point (4,2)

2. Relevant equations

3. The attempt at a solution

I am so lost as to how to do this :/.

Its a polynomial so f ' (x) must = 0 at x=3 and x=5 (can't not exist), and I also know that the derivative of f(x) will be a function of degree 2, which can have at most two roots. Thus the function must be of the form a(x-3)(x-5)=f ' (x), right?

I know that the second derivative is defined for all x (can't have negative exponents, they would become constants before that point). And that f '' (x)=0 at x=4...

I just can't see how to piece it all together. Can someone help me out?

**Physics Forums | Science Articles, Homework Help, Discussion**

Dismiss Notice

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Derive the form of a function

**Physics Forums | Science Articles, Homework Help, Discussion**