Deriving Einstein Eq. from Variational Principle

In summary: I believe this is the correct form for the first term, as it matches with the second term when the indices are set equal to each other.
  • #1
rezkyputra
5
2

Homework Statement


Okay, in Carrol's Intro to Spacetime and Geometry, Chapter 4, Eq. 4.63 to 4.65 require a derivation of a difference between Christoffel Symbol. I did the calculation and found my answer to be somewhat correct in form, but the indices doesn't match up

Homework Equations


So we need someway to change this prove this eq.
\begin{equation}
g^{ab} \delta \Gamma_{bc}^a - g^{ad}\delta \Gamma_{ac}^c = g_{ab} \, \nabla^d \, \delta g^{ab} - \nabla_c \, \delta g^{dc}
\end{equation}

also the variation of Chirstoffel Symbol is:

\begin{equation}
\delta \Gamma_{bc}^a = -\frac{1}{2} \left(g_{qc} \, \nabla_b \, \delta g^{aq} + g_{qb} \, \nabla_c \, \delta g^{aq} - g_{rb} \, g_{sc} \, \nabla^a \, \delta g^{rs} \right)
\end{equation}

The Attempt at a Solution


So first I'll break that into the first and second term

First Term
\begin{align}
\delta \Gamma_{bc}^a &= \frac{1}{2} \left( - g_{qb} \, \nabla_a \, \delta g^{dq} - g_{qa} \, \nabla_b \, \delta g^{dq} + g_{ra} \, g_{sb} \, \nabla^d \, \delta g^{rs} \right) \nonumber \\
g^{ab} \delta \Gamma_{bc}^a &= \frac{1}{2} \left( - g_{qb} \, g^{ab} \, \nabla_a \, \delta g^{dq} - g_{qa} \, g^{ab} \, \nabla_b \, \delta g^{dq} + g_{ra} \, g_{sb} \, g^{ab} \, \nabla^d \, \delta g^{rs} \right) \nonumber \\
g^{ab} \delta \Gamma_{bc}^a &= \frac{1}{2} \left( - g_{qb} \, g^{ab} \, \nabla_a \, \delta g^{dq} - g_{qa} \, g^{ab} \, \nabla_b \, \delta g^{dq} + g_{ra} \, g_{sb} \, \frac{1}{2} \left[g^{ab} + g^{ab} \right] \, \nabla^d \, \delta g^{rs} \right) \nonumber \\
&= \frac{1}{2} \left( - \delta_q^a \, \nabla_a \, \delta g^{dq} - \delta_q^b \, \nabla_b \, \delta g^{dq} + \frac{1}{2} \left[\delta_r^b \, g_{sb} + \delta_s^a \, g_{ra}\right] \, \nabla^d \, \delta g^{rs} \right) \nonumber \\
&= \frac{1}{2} \left(- \nabla_q \, \delta g^{dq} - \nabla_q \, \delta g^{dq} + \, g_{ab} \, \nabla^d \, \delta g^{ab} \right) \nonumber \\
&= - \nabla_q \, \delta g^{dq} + \frac{1}{2} \, g_{ab} \, \nabla^d \, \delta g^{ab} \nonumber \\
&q \ is \ "loose" \ so \ just \ set \ it \ equal \ to \ c \\
&= - \nabla_c \, \delta g^{dc} + \frac{1}{2} \, g_{ab} \, \nabla^d \, \delta g^{ab} \nonumber \\
\end{align}

Second Term

\begin{align}
- \delta \Gamma_{ac}^c &= \frac{1}{2} \left(g_{qc} \, \nabla_a \, \delta g^{cq} + g_{qa} \, \nabla_c \, \delta g^{cq} - g_{ra} \, g_{sc} \, \nabla^c \, \delta g^{rs} \right) \nonumber \\
- g^{ad}\delta \Gamma_{ac}^c &= \frac{1}{2} \left(g_{qc} \, g^{ad} \, \nabla_a \, \delta g^{cq} + g_{qa} \, g^{ad} \, \nabla_c \, \delta g^{cq} - g_{ra} \, g_{sc} \, g^{ad} \, \nabla^c \, \delta g^{rs} \right) \nonumber \\
&= \frac{1}{2} \left(g_{qc} \, \nabla^d \, \delta g^{cq} + \delta_q^d \, \nabla_c \, \delta g^{cq} -\delta_r^d \, \nabla_s \, \delta g^{rs} \right) \nonumber \\
&= \frac{1}{2} \left(g_{qc} \, \nabla^d \, \delta g^{cq} + \nabla_c \, \delta g^{cd} - \nabla_s \, \delta g^{ds} \right) \nonumber \\
&s \ is \ "loose" \ so \ just \ set \ it \ equal \ to \ c \\
&= \frac{1}{2} g_{qc} \, \nabla^d \, \delta g^{cq}
\end{align}

Now those two term adds up into

\begin{align}
&= \frac{1}{2} g_{qc} \, \nabla^d \, \delta g^{cq} + \frac{1}{2} \, g_{ab} \, \nabla^d \, \delta g^{ab} - \nabla_c \, \delta g^{dc}
\end{align}

Soo the last term is correct, but the first two, whila having the same form as the answer, their indices doesn't add up (i think)

so did i miss something? or are there anything wrong in my calculation?

Thanks in advance
 
Physics news on Phys.org
  • #2
Welcome to PF!
rezkyputra said:

Homework Equations


So we need someway to change this prove this eq.
\begin{equation}
g^{ab} \delta \Gamma_{bc}^a - g^{ad}\delta \Gamma_{ac}^c = g_{ab} \, \nabla^d \, \delta g^{ab} - \nabla_c \, \delta g^{dc}
\end{equation}
First term on left is not written correctly. You have ##a## as an upper index twice.

The Attempt at a Solution


So first I'll break that into the first and second term

First Term
\begin{align}
\delta \Gamma_{bc}^a &= \frac{1}{2} \left( - g_{qb} \, \nabla_a \, \delta g^{dq} - g_{qa} \, \nabla_b \, \delta g^{dq} + g_{ra} \, g_{sb} \, \nabla^d \, \delta g^{rs} \right) \nonumber \\

\end{align}
You have ##a## as an upper index on the left but lower on the right.
 
  • #3
Okay, it was a typo, i got it correct indices on my notes

so let me retype it

\begin{align}
\delta \Gamma_{ab}^d &= \frac{1}{2} \left( - g_{qb} \, \nabla_a \, \delta g^{dq} - g_{qa} \, \nabla_b \, \delta g^{dq} + g_{ra} \, g_{sb} \, \nabla^d \, \delta g^{rs} \right) \nonumber \\
g^{ab} \delta \Gamma_{ab}^d &= \frac{1}{2} \left( - g_{qb} \, g^{ab} \, \nabla_a \, \delta g^{dq} - g_{qa} \, g^{ab} \, \nabla_b \, \delta g^{dq} + g_{ra} \, g_{sb} \, g^{ab} \, \nabla^d \, \delta g^{rs} \right) \nonumber \\
g^{ab} \delta \Gamma_{ab}^d &= \frac{1}{2} \left( - g_{qb} \, g^{ab} \, \nabla_a \, \delta g^{dq} - g_{qa} \, g^{ab} \, \nabla_b \, \delta g^{dq} + g_{ra} \, g_{sb} \, \frac{1}{2} \left[g^{ab} + g^{ab} \right] \, \nabla^d \, \delta g^{rs} \right) \nonumber \\
&= \frac{1}{2} \left( - \delta_q^a \, \nabla_a \, \delta g^{dq} - \delta_q^b \, \nabla_b \, \delta g^{dq} + \frac{1}{2} \left[\delta_r^b \, g_{sb} + \delta_s^a \, g_{ra}\right] \, \nabla^d \, \delta g^{rs} \right) \nonumber \\
&= \frac{1}{2} \left(- \nabla_q \, \delta g^{dq} - \nabla_q \, \delta g^{dq} + \, g_{ab} \, \nabla^d \, \delta g^{ab} \right) \nonumber \\
&= - \nabla_q \, \delta g^{dq} + \frac{1}{2} \, g_{ab} \, \nabla^d \, \delta g^{ab} \nonumber \\
\label{eq:8}
&= - \nabla_c \, \delta g^{dc} + \frac{1}{2} \, g_{ab} \, \nabla^d \, \delta g^{ab}
\end{align}

Second Term
\begin{align}
- \delta \Gamma_{ac}^c &= \frac{1}{2} \left(g_{qc} \, \nabla_a \, \delta g^{cq} + g_{qa} \, \nabla_c \, \delta g^{cq} - g_{ra} \, g_{sc} \, \nabla^c \, \delta g^{rs} \right) \nonumber \\
- g^{ad}\delta \Gamma_{ac}^c &= \frac{1}{2} \left(g_{qc} \, g^{ad} \, \nabla_a \, \delta g^{cq} + g_{qa} \, g^{ad} \, \nabla_c \, \delta g^{cq} - g_{ra} \, g_{sc} \, g^{ad} \, \nabla^c \, \delta g^{rs} \right) \nonumber \\
&= \frac{1}{2} \left(g_{qc} \, \nabla^d \, \delta g^{cq} + \delta_q^d \, \nabla_c \, \delta g^{cq} -\delta_r^d \, \nabla_s \, \delta g^{rs} \right) \nonumber \\
&= \frac{1}{2} \left(g_{qc} \, \nabla^d \, \delta g^{cq} + \nabla_c \, \delta g^{cd} - \nabla_s \, \delta g^{ds} \right) \nonumber \\
\label{eq:9}
&= \frac{1}{2} g_{qc} \, \nabla^d \, \delta g^{cq}
\end{align}

they both still doesn't prove this eq

\begin{equation}
\label{eq:10}
g^{ab} \delta \Gamma_{ab}^d - g^{ad}\delta \Gamma_{ac}^c = g_{ab} \, \nabla^d \, \delta g^{ab} - \nabla_c \, \delta g^{dc}
\end{equation}

They still doesn't add up!
 
  • #4
I believe eq's 8 and 9 do add to give eq. 10.
 

1. How did Einstein derive his famous equation, E=mc2, from the variational principle?

Einstein derived the equation E=mc2 by applying the variational principle to his theory of special relativity. He used this principle, which states that the path of an object between two points should minimize the action (a combination of energy and time), to derive the equations of motion for a particle. By considering the energy and momentum of a particle, he was able to show that the energy of a particle is equal to its mass times the speed of light squared.

2. What is the variational principle and how does it relate to Einstein's equation?

The variational principle is a fundamental principle in physics that states that the path taken by an object between two points should minimize the action, which is a combination of energy and time. This principle was used by Einstein to derive his famous equation, E=mc2. By considering the energy and momentum of a particle, he was able to show that the energy of a particle is equal to its mass times the speed of light squared.

3. Why did Einstein use the variational principle to derive his equation?

Einstein used the variational principle to derive his equation because it is a fundamental principle in physics that helps to explain the behavior of particles. By applying this principle to his theory of special relativity, he was able to mathematically derive the connection between energy and mass, which is described by his famous equation, E=mc2.

4. What other applications does the variational principle have in physics?

The variational principle has a wide range of applications in physics, including in classical mechanics, quantum mechanics, and electromagnetism. It is used to derive the equations of motion for particles, as well as to describe the behavior of fields and waves. It is also used in various areas of engineering, such as in the design of efficient structures and optimal control systems.

5. Is the variational principle only applicable to Einstein's theory of special relativity?

No, the variational principle is a general principle in physics that can be applied to various theories and systems. While Einstein used it to derive his famous equation, E=mc2, it has also been used to derive other important equations in physics, such as the Schrodinger equation in quantum mechanics. It is a powerful tool for understanding the behavior of particles and fields in different systems and is applicable to a wide range of theories in physics.

Similar threads

  • Advanced Physics Homework Help
Replies
4
Views
2K
  • Advanced Physics Homework Help
Replies
3
Views
1K
  • Advanced Physics Homework Help
Replies
0
Views
999
  • Advanced Physics Homework Help
Replies
5
Views
2K
  • Advanced Physics Homework Help
Replies
2
Views
911
  • Advanced Physics Homework Help
Replies
3
Views
1K
  • Advanced Physics Homework Help
Replies
10
Views
2K
  • Special and General Relativity
Replies
4
Views
590
  • Advanced Physics Homework Help
Replies
1
Views
847
  • Advanced Physics Homework Help
Replies
3
Views
860
Back
Top