I'm trying to derive the conservaton of energy for electromagnetic fields with currents from the action principle, but I have some trouble understanding how the interaction term in the Lagrangian fits into this.(adsbygoogle = window.adsbygoogle || []).push({});

The approach I have seen so far has been to express the Lagrangian density as $$\mathcal{L}(x^\alpha, A_\alpha, \partial_\beta A_\alpha) = \mathcal{L}_{field} + \mathcal{L}_{int} = -\frac {1} {4\mu_0}F^{\alpha \beta}F_{\alpha \beta} - A_\alpha J^\alpha$$ and then derive the equations of motion from that in the usual way. This leads to Maxwell's equations.

The problem I have with this approach is that ##J^\alpha(x)## depends on the space-time coordinates. This means that the Lagrangian is not invariant with respect to time and I cannot derive energy conservation using time translational symmetry. Without the interaction term, this works fine.

The above Lagrangian only describes the motion of ##A_\alpha##. Is there a way to formulate a Lagrangian that describes how ##A_\alpha## and ##J^\alpha## evolvestogether?

**Physics Forums | Science Articles, Homework Help, Discussion**

Dismiss Notice

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# I Deriving energy conservation from EM Lagrangian

Have something to add?

Draft saved
Draft deleted

**Physics Forums | Science Articles, Homework Help, Discussion**