Feeling a little bit more confident about my calculus skills I was hoping to check if this is correct. Let’s say you have:(adsbygoogle = window.adsbygoogle || []).push({});

[tex]g(|f(x)|)[/tex]

And you want to take the derivative with respect to x, well using the chain rule you get:

[tex]\bigl( g(|f(x)|) \bigr)' = (|f(x)|)' g'(|f(x)|)[/tex]

Looking more closly at [itex](|f(x)|)'[/itex]. Defining it as:

[tex]\left( +\sqrt{(f(x))^2} \right)'[/tex]

Then using the chain rule we get:

[tex](|f(x)|)' = 2f(x) f'(x) \: \frac{1}{2} \: \frac{1}{ +\sqrt{(f(x))^2} }[/tex]

Simplifying:

[tex](|f(x)|)' = f'(x) \frac{f(x)}{|f(x)|}[/tex]

Substituting back in the original equation and sorting out the problem of when f(x) = 0:

[tex]\bigl( g(|f(x)|) \bigr)' = \begin{cases}

f'(x) \frac{f(x)}{|f(x)|}g'(|f(x)|) & \text{if $ f(x) \neq 0$} \\ \\

\lim_{f(x) \rightarrow 0} \left(f'(x) \frac{f(x)}{|f(x)|}g'(|f(x)|) \right) & \text{if $ f(x) = 0$ and $ \lim_{f(x) \uparrow 0} \left( f'(x) \frac{f(x)}{|f(x)|}g'(|f(x)|) \right) = \lim_{f(x) \downarrow 0} \left( f'(x) \frac{f(x)}{|f(x)|}g'(|f(x)|) \right)$} \\ \\

\text{Undefinied} & \text{if $ f(x) = 0$ and $ \lim_{f(x) \uparrow 0} \left( f'(x) \frac{f(x)}{|f(x)|}g'(|f(x)|) \right) \neq \lim_{f(x) \downarrow 0} \left( f'(x) \frac{f(x)}{|f(x)|}g'(|f(x)|) \right)$}

\end{cases}

[/tex]

Correct? I know it all seems a bit over the top (especially when you look at the tex for it ) but I like things to be well defined and in a form like this where I understand it better.

Edit: I made a mistake, it should be correct now

**Physics Forums | Science Articles, Homework Help, Discussion**

Dismiss Notice

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Derivitave of a Modulus

**Physics Forums | Science Articles, Homework Help, Discussion**