Hi,(adsbygoogle = window.adsbygoogle || []).push({});

I've been trying to get my head around this. [itex]\Sigma_{(j)}[/itex] is a p x p matrix given by

[tex]\Sigma_{(j)} = \left(\begin{array}{cc}\sigma_{jj} & \boldsymbol{\sigma_{(j)}'}\\\boldsymbol{\sigma_{(j)}} & \boldsymbol{\Sigma_{(2)}}\end{array}\right)[/tex]

where [itex]\sigma_{jj}[/itex] is a scalar, [itex]\boldsymbol{\sigma_{(j)}}[/itex] is a (p-1)x1 column vector, and [itex]\boldsymbol{\Sigma_{(2)}}[/itex] is a (p-1)x(p-1) matrix.

The result I can't understand is

[tex]|\Sigma_{(j)}| = |\Sigma_{(2)}|(\sigma_{jj} - \boldsymbol{\sigma_{(j)}'\Sigma_{2}^{-1}\sigma_{(j)}})[/tex]

where |.| denotes the determinant. How does one get this? It seems to be consistent, but I don't 'see' how it is obvious. I searched the internet for results on determinants of block matrices but all I got was stuff for [a b;c d] where a, b, c, d are all n x n matrices, in which case the determinant is just det(ad-bc).

Any inputs would be appreciated.

Thanks in advance!

**Physics Forums | Science Articles, Homework Help, Discussion**

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Determinant of a block matrix

**Physics Forums | Science Articles, Homework Help, Discussion**