Determine the angle between the inclined plane and the horizontal

  • Thread starter Gtseviper
  • Start date
  • #1
Gtseviper
A hollow, thin-walled cylinder and a solid sphere start from rest and roll without slipping down an inclined plane of length 5 m. The cylinder arrives at the bottom of the plane 2.6 s after the sphere. Determine the angle between the inclined plane and the horizontal.

x=Vo + 1/2 at^2 and I got 3.97s for t
I=1/2 M(R^2 + R^2 I=2/5 MR^2
I got 5.20 for phida

The sun's radius is 6.96 108 m, and it rotates with a period of 25.3 days. Estimate the new period of rotation of the sun if it collapses with no loss of mass to become a neutron star of radius 5.3 km.

T2/T1 = R^2/R^2 and I got 1.47 x 10^-9 days m for T2 and then I converted it and get 1.27 x 10^-4ms
Figure 10-45 shows a hollow cylindrical tube of mass M = 0.8 kg and length L = 1.9 m. Inside the cylinder are two masses m = 0.4 kg, separated a distance = 0.6 m and tied to a central post by a thin string. The system can rotate about a vertical axis through the center of the cylinder. The system rotates at such that the tension in the string is 108 N just before it breaks.

M xWo^2 x r=T to get 30 rad/s for Wo
I initial=ML^2/10 + mr^2 +mr^2 and I got 1.01 kg m^2
I final=ML^2/10 +Mr^2 +Mr^2 and I got 2.96 kg m^2
Io Wo= I(final) W(final) and I got 10.25 rad/s for W(final)
 

Attachments

Answers and Replies

  • #2
HallsofIvy
Science Advisor
Homework Helper
41,833
956
x=Vo + 1/2 at^2 and I got 3.97s for t
I=1/2 M(R^2 + R^2 I=2/5 MR^2
For which? The cylinder or the sphere?
I got 5.20 for phida
I have no idea if this is right or wrong. You didn't say what
"phida" means.

The sun's radius is 6.96 108 m, and it rotates with a period of 25.3 days. Estimate the new period of rotation of the sun if it collapses with no loss of mass to become a neutron star of radius 5.3 km.

T2/T1 = R^2/R^2 and I got 1.47 x 10^-9 days m for T2 and then I converted it and get 1.27 x 10^-4ms
Okay, you used "conservation of angular momentum". Looks good.

Figure 10-45 shows a hollow cylindrical tube of mass M = 0.8 kg and length L = 1.9 m. Inside the cylinder are two masses m = 0.4 kg, separated a distance = 0.6 m and tied to a central post by a thin string. The system can rotate about a vertical axis through the center of the cylinder. The system rotates at such that the tension in the string is 108 N just before it breaks.
What is the question? In any case, you don't say what the radius of the cylinder is.
 

Related Threads on Determine the angle between the inclined plane and the horizontal

Replies
7
Views
2K
  • Last Post
Replies
6
Views
3K
  • Last Post
Replies
5
Views
5K
Replies
3
Views
11K
Replies
7
Views
4K
Replies
2
Views
388
Replies
3
Views
5K
Replies
3
Views
8K
Top