1. Not finding help here? Sign up for a free 30min tutor trial with Chegg Tutors
    Dismiss Notice
Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

Determine whether there is a train collision

  1. Aug 28, 2005 #1
    Two trains, one traveling at 60 miles/hr and the other at 80 miles/hr, are headed toward one another on a straight level track. When they are 2.0 miles apart, both engineers simultaneously see the other's train and apply their brakes. If the brakes decelerate each train at the rate of 3.0 ft/sec^2, determine whether there is a collision.

    Ok, so is it correct to say that if [itex] d > \frac{(v_{1}-v_{2})^{2}}{2a} [/itex] there will be no collision, and if [itex] d < \frac{(v_{1}-v_{2})^{2}}{2a} [/itex] there will be a collision (d is distance, v is velocity, and a is acceleration). When I do this, I get that there will be a collision, but the correct answer is that there will be no collision. What am I doing wrong?

    Thanks
     
  2. jcsd
  3. Aug 28, 2005 #2

    StatusX

    User Avatar
    Homework Helper

    You need to use two equations and see how far each train gets, and then see whether the sum is greater or less than 2 miles. The reason you can't get away with one equation is because once the 60 mph train stops, it doesn't start going backwards. It stops accelerating, but the 80 mph train continues slowing down. Plus, if you were going to do it that way, you would use v1+v2 in your equation, and 6 ft/sec^2 as the acceleration, since both trains are accelerating.
     
  4. Aug 29, 2005 #3
    would I use [itex] x = x{0} + v_{x}_{0}t + \frac{1}{2}(v_{x}_{0} + v_{x}) [/itex]?
     
  5. Aug 29, 2005 #4

    StatusX

    User Avatar
    Homework Helper

    I think your last term should be 1/2 a t^2, and remember you need to find the t where each train stops and plug that in to get x. You don't need an x_0, you just need to know if the total distance the trains travel once they start braking is more or less than 2 miles.
     
  6. Aug 30, 2005 #5
    So [itex] v_{x} = v_{x}_{0} + a_{x}t [/itex]. I got [itex] t = 20, t = 26.66 [/itex] for 60 mph and 80 mph respectively. After plugging these times in [itex] x = v_{x}_{0}t + \frac{1}{2}a_{x}t^{2} [/itex] I got [itex] 1066.1334 + 600 = 1666.1334 ft[/itex] which is less than two miles. Is this correct?
     
  7. Aug 30, 2005 #6

    StatusX

    User Avatar
    Homework Helper

    Check your units again.
     
  8. Aug 30, 2005 #7
    should i convert the acceleration from ft/sec to miles/hour? Also the time in seconds to time in minutes?
     
  9. Aug 30, 2005 #8

    StatusX

    User Avatar
    Homework Helper

    You just need to make sure everything has the same units of length and time (eg, feet and seconds).
     
  10. Aug 30, 2005 #9
    but otherwise everything is correct?
     
Know someone interested in this topic? Share this thread via Reddit, Google+, Twitter, or Facebook

Have something to add?



Similar Discussions: Determine whether there is a train collision
  1. Train collision (Replies: 1)

Loading...