Determining displacement of columns equation coefficients

  • Thread starter psuaero
  • Start date
  • #1
4
0

Homework Statement


Determine the constants [tex]c_{1}[/tex],[tex]c_{2}[/tex],[tex]c_{3}[/tex],[tex]c_{4}[/tex]

of the column displacement equation where k=[tex]\sqrt{\frac{P}{EI}}[/tex]

In lab we subjected 3 specimens to a compressive load in a pinned-pinned and clamped clamped configurations. I have to compare theory results to experimental.


Homework Equations


displacement: [tex]w(x)=c_{1}sin(kx)+c_{2}cos(kx)+c_{3}x+c_{4}[/tex]


The Attempt at a Solution



I know i have the following boundary conditions for pinned pinned:
[tex]w(0)=0 , EI*w''(0)=0 , w(L)=0 , EI*w''(L)=0[/tex]

and for clamped clamped
[tex]w(0)=0 , w'(0)=0 , w(L)=0 , w'(L)=0[/tex]

I found that
[tex]w'(x)=kc_1cos(kx)-kc_2sin(kx)+c_3[/tex]

[tex]w''(x)=-k^2c_1sin(kx)-k^2c_2cos(kx)[/tex]

using boundary conditions for simply supported I arrive at system of equations:
[tex]w(0)\rightarrow c_2+c_4=0[/tex]

[tex]w(L)\rightarrow c_1sin(kL)+c_2cos(kL)+c_3L+c_4=0[/tex]

[tex]w''(0) \rightarrow -k^2c_2=0[/tex]]

[tex]w''(L)\rightarrow -k^2c_1sin(kL)-k^2c_2cos(kL)=0[/tex]

using clamped clamped boundary conditions
[tex]w(0)\rightarrow c_2+c_4=0[/tex]

[tex]w'(0)\rightarrow c_1k+c_3=0[/tex]

[tex]w(L)\rightarrow c_1sin(kL)+c_2cos(kL)+c_3L+c_4=0[/tex]

[tex]w'(L)\rightarrow c_1kcos(kL)-c_2ksin(kL)+c_3=0[/tex]

I tried putting the above in matrix form and solve simultaneously but only achieved the trivial solution. I was thinking of finding the determinate of the matrices and plotting them but not sure if that would provide the correct solution. any suggestions?

Homework Statement





Homework Equations





The Attempt at a Solution

 

Answers and Replies

Related Threads on Determining displacement of columns equation coefficients

  • Last Post
Replies
5
Views
3K
  • Last Post
Replies
1
Views
1K
  • Last Post
Replies
5
Views
1K
  • Last Post
Replies
7
Views
1K
  • Last Post
Replies
8
Views
5K
Replies
3
Views
4K
  • Last Post
Replies
1
Views
919
Replies
3
Views
3K
  • Last Post
Replies
0
Views
1K
Top