I am struggling to obtain the hkl planes of a kikuchi pattern. The material is Aluminum with a = 4.05 A. There are 4 bands, the first, b1, is pointing vertically down, the second, b1, is at the 34.5 degree angle from b1, the third, b3, is 65 degrees from b1, and the fourth, b4 is 90 degrees from b1. the image is in reciprocal lattice.(adsbygoogle = window.adsbygoogle || []).push({});

The widths are:

b1 = 9 mm

b2 = 5 mm

b3 = 11 mm

b4 = 6.5 mm

My work so far is that the material is FCC, so the allowed HKL planes are all odd and all even. I reasoned that the ratio of the widths are equal to the ratio of the hkl planes magnitude, or w1/w2 = (h1^2+k1^2+l1^2)^.5 / (h2^2+k2^2+l2^2)^.5. When I tried taking the ratios, I couldn't match any of the h^2+k^2+l^2 ratio values to the width ratios for FCC, however, and am unsure of where to go from there.

**Physics Forums | Science Articles, Homework Help, Discussion**

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Determining hkl planes of a kikuchi pattern?

Have something to add?

Draft saved
Draft deleted

**Physics Forums | Science Articles, Homework Help, Discussion**