(adsbygoogle = window.adsbygoogle || []).push({}); 1. The problem statement, all variables and given/known data

Let A =

[4 0 1;

2 3 2;

1 0 4]

Let n >= 1 be an integer. Compute the matrix A^n with entries depending on n.

2. Relevant equations

3. The attempt at a solution

First I need to show that A is diagonalizable, and find a matrix S such that D = (S^-1)(A)(S) is diagonal. I am having serious trouble finding S. First I found the eigenvalues of A to be 3,3, and 5. Next I found the eigenvectors to be for [tex]\lambda = 3[/tex]: (1 0 -1) and [tex]\lambda = 5[/tex] : (1 2 1). There's a theorem in my book that says that a matrix is only diagonalizable if and only if there are n linearly independent eigenvectors. I only have 2. I'm not quite sure how to get the third.

Now, assuming I had three eigenvectors, I would combine them to form the matrix S, and if the [tex]det(S)\neq 0[/tex] then the eigenvectors would be linearly independent, and

i could find S^-1. Then A^n would just be (S^-1)(D^n)(S). Does this all sound correct? I guess I'm just a little confused about the eigenvalue/eigenvector situation....

Thanks for any help.

**Physics Forums | Science Articles, Homework Help, Discussion**

Dismiss Notice

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Homework Help: Diagonalizable Matrix

**Physics Forums | Science Articles, Homework Help, Discussion**