- #1
- 227
- 22
On page 97, Wald is computing the component ##G_{ii}## where ##1 \leq i \leq 3## of the Einstein tensor, assuming that the metric is given by ##g = -d\tau^2 + a^2(\tau)\big(dx^2 + dy^2 + dz^2)## where ##a## is the time evolution function. He writes:
##G_{ii} = R_{ii} - \frac{1}{2}R##. But if ##G_{ii} = R_{ii} - \frac{1}{2}R## then that must mean that ##g_{ii} = 1##, which isn't necessarily true, as ##g_{ii} = a^2(\tau)##. Did he make a mistake?
##G_{ii} = R_{ii} - \frac{1}{2}R##. But if ##G_{ii} = R_{ii} - \frac{1}{2}R## then that must mean that ##g_{ii} = 1##, which isn't necessarily true, as ##g_{ii} = a^2(\tau)##. Did he make a mistake?