1. Limited time only! Sign up for a free 30min personal tutor trial with Chegg Tutors
    Dismiss Notice
Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

Homework Help: Dielectric interface in a waveguide

  1. Mar 31, 2009 #1
    1. The problem statement, all variables and given/known data
    Consider a wave guide with a square cross section of dimensions a x a. Let the z axis be the axis of the wave guide. Suppose the region z < 0 is vacuum, and the region z >0 is a dielectric with permittivity [tex] \epsilon [/tex]. Write a solution of the wave equations and boundary conditions such that there is an incident and reflected wave for z < 0 and a transmitted wave fro z > 0. All three waves are TE(1,0) waves. Determine the transmitted power as a fraction of the incident power. [Answer: [tex] S_{trans}/S_{inc} = 4kk^{'}/(k+k^{'})^2[/tex]]

    2. Relevant equations

    3. The attempt at a solution
    So I wrote the electric field as a superposition of the TE electric field for z < 0:
    [tex]\vec{E} = \left[-\hat{y}\frac{\pi}{a}sin\left(\frac{\pi x}{a}\right)\right][\Psi_0e^{i(kz-\omega t)}+\Psi_0^{''}e^{-i(kz+\omega t)}][/tex]
    Applying boundary condition that the parallel components of E must be continuous on the boundary at z=0, I got that [tex]\Psi_0^{'} = \Psi_0 + \Psi_0^{''} [/tex]
    Where the double primed one is the reflected wave, and the single prime is transmitted. This, however, is the only equation I can get by applying boundary conditions. Any thoughts? Also I get a really messy equation if I take the real part of E and B and cross them, nothing like the simple answer they give me.
  2. jcsd
Share this great discussion with others via Reddit, Google+, Twitter, or Facebook

Can you offer guidance or do you also need help?
Draft saved Draft deleted