- 5

- 0

**(a)**[tex]f \left( x \right) =\int _{-\infty }^{{x}^{2}/2}\!{e^{x-1/2\,{t}^{2

}}}{dt}[/tex]

I foud the solution: [tex]f \left( x \right) =1/2\,{e^{x}}\sqrt {2\pi } \left( 1+{\it

erf} \left( 1/4\,{x}^{2}\sqrt {2} \right) \right) [/tex]

**(b)**Find the solution of the dfferential equatio:

[tex]{\frac {d^{2}}{d{x}^{2}}}y \left( x \right) =f \left( x \right) [/tex] with y(0)=0 and dy(0)/dx = 0

In the form : [tex]y \left( x \right) =\int _{0}^{x}\! \left( x-t \right) f \left( t

\right) {dt}[/tex]

Veronica