Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

Difference between toughness and strength?

  1. Mar 14, 2005 #1
    whoever could give a detailed explanation? :frown:
  2. jcsd
  3. Mar 15, 2005 #2


    User Avatar
    Staff Emeritus
    Science Advisor

    Strength refers to resistance to deformation, and also to a large elastic range. In the Elastic region of the stress-strain relationship, the relationship is described by a linear function, such that [itex]\sigma[/itex] = E [itex]\epsilon[/itex], where [itex]\sigma[/itex] is the stress, E is the Elastic modulus, and [itex]\epsilon[/itex] is the strain.

    At a point called the yield point, the relationship between stress and strain depart from linear, and the material yields meaning that permanent or inelastic and plastic deformation occur.

    Beyond the yield point or yield strength, less stress is required for a given amount of strain (deformation). This proceeds up to the ultimate tensile strength, which is where uniform elongation is measured. At this point, a tensile specimen begins to 'neck', i.e. the change in cross-section becomes non-uniform. Also, beyond the ultimate tensile strength, the strain increases without additional stress. If the load is not immediately removed, the material will strain to failure.

    Toughness is the resistance to failure or crack propagation. It is somewhat related to strength. Very strong materials will have low toughness, i.e. low tolerance for flaws or defects, i.e. incipient cracks.

    Toughness relates to the amount of energy absorbed in order to propagate a crack. Materials with high toughness require greater energy (by virtue of force or stress) to maintain crack propagation. Toughness is described in terms of a stress intensity factor (K) or J-integral, or the strain energy release rate of nonlinear elastic materials, (J).

    See - http://www.efunda.com/formulae/solid_mechanics/fracture_mechanics/fm_epfm_J.cfm - for more on J-integral.
  4. Mar 15, 2005 #3
    Thank you Astronuc. Much helpful.
  5. Mar 16, 2005 #4
    Picture the stress-strain curve for an elastic-plastic metal. Strength is how high the curve reaches on the stress axis. Toughness is the area under the curve (and so related to energy).

    A good structural alloy is both strong and tough.
Share this great discussion with others via Reddit, Google+, Twitter, or Facebook