1. Limited time only! Sign up for a free 30min personal tutor trial with Chegg Tutors
    Dismiss Notice
Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

Homework Help: Differentiable manifolds

  1. Mar 28, 2010 #1
    1. The problem statement, all variables and given/known data

    Let [tex] f: M \rightarrow N [/tex], [tex]g:N \rightarrow K [/tex], and [tex] h = g \circ f : M \rightarrow K [/tex]. Show that [tex] h_{*} = g_{*} \circ f_{*} [/tex].

    Proof:

    Let [tex]M[/tex],[tex] N[/tex] and [tex] K[/tex] be manifolds and [tex] f [/tex] and [tex] g [/tex] be [tex]C^\infinity[/tex] functions.

    Let [tex] p \in M[/tex]. For any [tex] u \in F^{\infinity}(g(f((p)))[/tex] and any derivation [tex]D[/tex] at [tex] p [/tex].

    [tex] [g \circ f)_* D](u) = D(u \circ g \circ f) = (f_{*}D)(u \circ g) = (g_{*}(f_{*}D))(u)[/tex]

    2. Relevant equations



    3. The attempt at a solution
     
  2. jcsd
  3. Mar 30, 2010 #2
    Should be C^\infty and F^\infty(g(f((p)))
     
Share this great discussion with others via Reddit, Google+, Twitter, or Facebook




Loading...