Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

Differentiable manifolds

  1. Mar 28, 2010 #1
    1. The problem statement, all variables and given/known data

    Let [tex] f: M \rightarrow N [/tex], [tex]g:N \rightarrow K [/tex], and [tex] h = g \circ f : M \rightarrow K [/tex]. Show that [tex] h_{*} = g_{*} \circ f_{*} [/tex].


    Let [tex]M[/tex],[tex] N[/tex] and [tex] K[/tex] be manifolds and [tex] f [/tex] and [tex] g [/tex] be [tex]C^\infinity[/tex] functions.

    Let [tex] p \in M[/tex]. For any [tex] u \in F^{\infinity}(g(f((p)))[/tex] and any derivation [tex]D[/tex] at [tex] p [/tex].

    [tex] [g \circ f)_* D](u) = D(u \circ g \circ f) = (f_{*}D)(u \circ g) = (g_{*}(f_{*}D))(u)[/tex]

    2. Relevant equations

    3. The attempt at a solution
  2. jcsd
  3. Mar 30, 2010 #2
    Should be C^\infty and F^\infty(g(f((p)))
Share this great discussion with others via Reddit, Google+, Twitter, or Facebook