• Support PF! Buy your school textbooks, materials and every day products Here!

Differentiable manifolds

  • Thread starter Nusc
  • Start date
  • #1
753
2

Homework Statement



Let [tex] f: M \rightarrow N [/tex], [tex]g:N \rightarrow K [/tex], and [tex] h = g \circ f : M \rightarrow K [/tex]. Show that [tex] h_{*} = g_{*} \circ f_{*} [/tex].

Proof:

Let [tex]M[/tex],[tex] N[/tex] and [tex] K[/tex] be manifolds and [tex] f [/tex] and [tex] g [/tex] be [tex]C^\infinity[/tex] functions.

Let [tex] p \in M[/tex]. For any [tex] u \in F^{\infinity}(g(f((p)))[/tex] and any derivation [tex]D[/tex] at [tex] p [/tex].

[tex] [g \circ f)_* D](u) = D(u \circ g \circ f) = (f_{*}D)(u \circ g) = (g_{*}(f_{*}D))(u)[/tex]

Homework Equations





The Attempt at a Solution

 

Answers and Replies

  • #2
753
2
Should be C^\infty and F^\infty(g(f((p)))
 

Related Threads on Differentiable manifolds

  • Last Post
Replies
2
Views
1K
Replies
7
Views
2K
Replies
0
Views
2K
  • Last Post
Replies
6
Views
835
  • Last Post
Replies
4
Views
2K
  • Last Post
Replies
2
Views
1K
Top