1. Not finding help here? Sign up for a free 30min tutor trial with Chegg Tutors
    Dismiss Notice
Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

Differential Equation w/ Power Series Solution

  1. Dec 12, 2004 #1

    [tex] y^{\prime} = x^2 y [/tex]

    General Comments

    There must be some kind of flaw in my solution as I don't get to the same result as the one my book provides:

    [tex] y = c_0 \sum _{n=0} ^{\infty} \frac{x^{3n}}{3^n n!} = c_0 e^{x^3 / 3} \qquad \fbox{CORRECT ANSWER} [/tex]

    Any help is highly appreciated.

    My Solution


    [tex] y = \sum _{n=0} ^{\infty} c_n x^n \Longrightarrow x^2 y = \sum _{n=0} ^{\infty} c_n x^{n+2} = \sum _{n=3} ^{\infty} c_{n-3} x^{n-1} [/tex]


    [tex] y^{\prime} = \sum _{n=1} ^{\infty} n c_n x^{n-1} [/tex]


    [tex] \sum _{n=1} ^{\infty} n c_n x^{n-1} = \sum _{n=3} ^{\infty} c_{n-3} x^{n-1} \Longrightarrow c_{n-3} = nc_n \quad n=3,4,5,\ldots [/tex]

    Hence, I ultimately get

    [tex] y = c_0 + c_1 x + c_2 x^2 + c_0 \sum _{n=1} ^{\infty} \left[ \frac{x^{3n}}{3\cdot 6\cdot 9\cdot \cdots \cdot \left( 3n \right) } \right] + c_1 \sum _{n=2} ^{\infty} \left[ \frac{x^{3n-2}}{4\cdot 7\cdot 10\cdot \cdots \cdot \left( 3n-2 \right) } \right] + c_2 \sum _{n=2} ^{\infty} \left[ \frac{x^{3n-1}}{5\cdot 8\cdot 11\cdot \cdots \cdot \left( 3n-1 \right) } \right] \qquad \fbox{MY ANSWER} [/tex]

    Thank you very much!!
  2. jcsd
  3. Dec 12, 2004 #2


    User Avatar
    Science Advisor
    Homework Helper

    If you do your recursion relation carefully you will find that [itex]c_1 = c_2 = 0[/itex] since [itex]c_n = 0[/itex] for n < 0.
  4. Dec 12, 2004 #3
    Oh... I've got it. Thanks
  5. Dec 12, 2004 #4


    User Avatar
    Science Advisor
    Homework Helper

    Cheating method:Why bother with stinky recursion relations,when u can use a series already known?? :wink:

    [tex]\frac{dy}{dx} =y x^2 [/tex] from which,by separating variables and integrating,one gets:
    [tex]y=C\exp(\frac{x^3}{3}) [/tex].To find the series the problem asks you about,plug [itex] \frac{x^3}{3} [/itex] in the power series of [itex]\exp{x} [/itex] and you'll have your answer.

    PS.This cheating trick works,as the differential eq.is easily solvable exactly.In general,it does not. :wink:
  6. Dec 12, 2004 #5
    Just a final check...


    Method #1

    How about...

    [tex] y = c_0 + c_1 x + c_2 x^2 + c_0 \sum _{n=1} ^{\infty} \left[ \frac{x^{3n}}{3\cdot 6\cdot 9\cdot \cdots \cdot \left( 3n \right) } \right] + c_1 \sum _{n=2} ^{\infty} \left[ \frac{x^{3n-2}}{4\cdot 7\cdot 10\cdot \cdots \cdot \left( 3n-2 \right) } \right] + c_2 \sum _{n=2} ^{\infty} \left[ \frac{x^{3n-1}}{5\cdot 8\cdot 11\cdot \cdots \cdot \left( 3n-1 \right) } \right] [/tex]

    So, [tex] c_1 = c_2 = 0 [/tex] ( I don't see clearly why ) . Then, we find

    [tex] y = c_0 + c_0 \sum _{n=1} ^{\infty} \left[ \frac{x^{3n}}{3\cdot 6\cdot 9\cdot \cdots \cdot \left( 3n \right) } \right] = c_0 \sum _{n=0} ^{\infty} \frac{x^{3n}}{3^{n}n!} = c_0 e^{x^3 /3} [/tex]


    Method #2

    [tex] \frac{dy}{dx} = x^2 y \Longrightarrow \int \frac{1}{y}dy = \int x^2 dx [/tex]


    [tex] \ln y = \frac{x^3}{3} \Longrightarrow y = Ce^{x^3/3} [/tex]

    where [tex] C = c_0 [/tex]
    Last edited: Dec 12, 2004
Know someone interested in this topic? Share this thread via Reddit, Google+, Twitter, or Facebook

Have something to add?