[tex]\frac{ds}{dt}=600-\frac{2s}{200+t}[/tex](adsbygoogle = window.adsbygoogle || []).push({});

[tex]\frac{ds}{dt}+\frac{2s}{200+t}=600[/tex]

[tex]\frac{ds}{dt}e^{ln(100+t/2)}+\frac{2s}{200+t}e^{ln(100+t/2)}=e^{ln(100+t/2)}600[/tex]

[tex]\frac{d}{dt}(se^{ln(100+t/2)})=(100+t/2)600[/tex]

[tex]se^{ln(100+t/2)}=\int(100+t/2)600dt[/tex]

[tex]s(100+t/2)=600(100t+t^2/4)+C[/tex]

t=0 s=20 000

[tex]20.000\cdot100=C[/tex]

But this is wrong

I guess i want to know what I did wrong. I used the product rule for derivation backwards. Here is answer sheet

http://bildr.no/view/1051423

**Physics Forums | Science Articles, Homework Help, Discussion**

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Differential equation

Loading...

**Physics Forums | Science Articles, Homework Help, Discussion**