Problem from my textbook - Solve:(adsbygoogle = window.adsbygoogle || []).push({});

[tex]\frac{dy}{dx} = \frac{4y - 3x}{2x - y}[/tex]

Answer provided:

[tex]\left| y - x \right| = \mathrm{C} \left| y + 3x \right| ^5 \mbox{.} \mbox{ Also, } y = -3x \mbox{.}[/tex]

My answer is pretty close to that one, but it seems like I missed some step. Anyhow, here's what's I've got:

Left-hand side:

[tex] \frac{dy}{dx} = \frac{d}{dx} \left( xv \right)[/tex]

[tex]\frac{dy}{dx} = xv^{\prime} + v[/tex]

[tex]\frac{dy}{dx} = x\frac{dv}{dx} + v[/tex]

Right-hand side:

[tex]\frac{dy}{dx} = \frac{4y - 3(y/v)}{2(y/v) - y}[/tex]

[tex] \frac{dy}{dx} = -\left( \frac{4v-3}{v-2} \right)[/tex]

Hence, this equation is homogeneous. As a result, we find

[tex] x\frac{dv}{dx} + v = -\left( \frac{4v-3}{v-2} \right) [/tex]

[tex]x\frac{dv}{dx} = \frac{-v^2 -2v + 3}{v-2} \mbox{,}[/tex]

which is separable. Thus, we obtain

[tex]\int \frac{v-2}{-v^2 -2v + 3} \: dv = \int \frac{dx}{x}[/tex]

[tex]\frac{1}{4} \ln \left| v - 1 \right| - \frac{5}{4} \ln \left| v + 3 \right| = \ln \left| x \right| + \mathrm{C}[/tex]

[tex]\ln \left| v - 1 \right| - 5 \ln \left| v + 3 \right| = 4 \ln \left| x \right| + \mathrm{C}[/tex]

[tex]\ln \frac{\left| v - 1 \right|}{\left| v + 3 \right| ^5} = \ln \left( x^4 \right) + \mathrm{C}[/tex]

[tex]\frac{\left| v - 1 \right|}{\left| v + 3 \right| ^5} = \mathrm{C} x^4[/tex]

[tex]\frac{\left| (y/x) - 1 \right|}{\left| (y/x) + 3 \right| ^5} = \mathrm{C} x^4[/tex]

[tex]\frac{\left| y - x \right|}{\left| y + 3x \right| ^5} = \mathrm{C} x^4[/tex]

[tex]\left| y - x \right| = \mathrm{C} x^4 \left| y + 3x \right| ^5 \mbox{,}[/tex]

which is different from

[tex]\left| y - x \right| = \mathrm{C} \left| y + 3x \right| ^5 \mbox{.}[/tex]

Again, it seems like I missed some step. Can anyone help me out with that?

By the way, I can't see why [tex]y=-3x[/tex] also is an answer. Could you please clarify it?

Any help is highly appreciated.

**Physics Forums | Science Articles, Homework Help, Discussion**

Dismiss Notice

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Homework Help: Differential equations/checking an answer - help, please!

**Physics Forums | Science Articles, Homework Help, Discussion**