Here's the initial-value problem I'm trying to solve:(adsbygoogle = window.adsbygoogle || []).push({});

[tex]\sin (2x) \: dx + \cos (3y) \: dy = 0 \qquad y \left( \frac{\pi}{2} \right) = \frac{\pi}{3}[/tex]

I can't see exactly where my mistake is, but I do know that my answer is not correct. My textbook gives:

[tex]y=\frac{1}{3} \left[ \pi - \arcsin \left( 3 \cos ^2 x \right) \right]\mbox{.}[/tex]

Here's what I've done:

[tex]\sin (2x) \: dx + \cos (3y) \: dy = 0[/tex]

[tex]\sin (2x) \: dx = - \cos (3y) \: dy [/tex]

[tex]\int \sin (2x) \: dx = - \int \cos (3y) \: dy [/tex]

[tex]-\frac{1}{2} \cos (2x) = -\cos (y) \sin (y) + \mathrm{C}[/tex]

[tex]\cos (2x) = 2\cos (y) \sin (y) + \mathrm{C}[/tex]

Applying the initial condition at this point gives:

[tex]\mathrm{C} = -\frac{\sqrt{3}}{2} - 1[/tex]

Thus, we have the following.

[tex]\cos (2x) = 2\cos (y) \sin (y) -\frac{\sqrt{3}}{2} - 1[/tex]

[tex]\cos (2x) = \sin (2y) -\frac{\sqrt{3}}{2} - 1[/tex]

[tex]\sin (2y) = \cos (2x) +\frac{\sqrt{3}}{2} + 1[/tex]

[tex]\sin (2y) = 2\cos ^2 (x) - 1 +\frac{\sqrt{3}}{2} + 1[/tex]

[tex]\sin (2y) = 2\cos ^2 (x) +\frac{\sqrt{3}}{2}[/tex]

[tex]y = \frac{1}{2} \arcsin \left[ 2\cos ^2 (x) +\frac{\sqrt{3}}{2} \right][/tex]

As you can see, I don't get the same answer.

Any help is highly appreciated.

**Physics Forums | Science Articles, Homework Help, Discussion**

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Homework Help: Differential equations/initial-value problem

**Physics Forums | Science Articles, Homework Help, Discussion**