Let M be a smooth manifold. Locally we can choose 1-forms [tex]\omega[/tex][tex]^{1}[/tex],[tex]\omega[/tex][tex]^{2}[/tex],...[tex]\omega[/tex][tex]^{n}[/tex] whish span M[tex]^{*}_{q}[/tex] for each q. Then are there vector fields X[tex]_{1}[/tex], X[tex]_{2}[/tex], ...,X[tex]_{n}[/tex] with [tex]\omega[/tex][tex]^{i}[/tex](X[tex]_{j}[/tex])=[tex]\delta^{i}_{j}[/tex]? Here [tex]\delta^{i}_{j}[/tex] is Kronecker delta.(adsbygoogle = window.adsbygoogle || []).push({});

By vector fields, I meant vector fields on M.

I think there are such vector fields on small neighborhood B in M.(since M* is locally

trivial, we can think of M* restricted to B as B X R^n. And we can find such 1-forms w_1, w_2,...w_n which span M* at each p in B. And of course we can find vector fields X[tex]_{1}[/tex], X[tex]_{2}[/tex], ...,X[tex]_{n}[/tex] on B such that

[tex]\omega[/tex][tex]^{i}[/tex](X[tex]_{j}[/tex])=[tex]\delta^{i}_{j}[/tex].

But I am wondering if we can extend this vector fields to whole of M.

**Physics Forums | Science Articles, Homework Help, Discussion**

Dismiss Notice

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Differential form

**Physics Forums | Science Articles, Homework Help, Discussion**