(adsbygoogle = window.adsbygoogle || []).push({}); 1. The problem statement, all variables and given/known data

Given: f is integrable on [a,b] and has a jump discontinuity at c in (a,b) (meaning that both one-sided limits exist as x approaches c from the right and from the left but that Lim(x->c-)[f] is not equal to Lim(x->c+)[f]).

Show that F(x) = Integrate[f,{a,x}] is not differentiable at x = c (That is, F = the definite integral of f from a to x).

2. Relevant equations

N/A

3. The attempt at a solution

So we know that F is continuous by FTC - the only way that I can think of checking that F is not differentiable is... by showing that the derivative doesn't exist (using the limit). However, the limit reduces to a form that's rather unusable (it becomes Lim(x->c)[Integrate[f,{c,x}]/(x-c)], and I don't know how to deal with the Integral in the numerator).

Instead, I've been looking at those one-sided limits (which we know exist). If we knew that f was continuous apart from at this jump discontinuity, this problem would be simple. That fact is not given, however. My thinking is that, since the one-sided limits exist, F must be "one-sided continuous" kind of - that is, for the right hand limit, given epsilon > 0, there exists delta > 0 such that 0<x-c<delta implies |f(x)-L|<epsilon by definition (if L = the limit). Therefore, f is continuous slightly to the right of c. However, it's only continuous for an arbitrarily small segment (which changes with epsilon) - therefore, I can't really use this to make F'(x) = f(x) when 0<x-c<delta, can I?

Any help is appreciated.

1. The problem statement, all variables and given/known data

2. Relevant equations

3. The attempt at a solution

**Physics Forums | Science Articles, Homework Help, Discussion**

Dismiss Notice

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Homework Help: Differentiating Integrals

**Physics Forums | Science Articles, Homework Help, Discussion**