I don't have a ton of experience in numerical methods, so I'm hoping someone can help me out. Suppose I have a sequence of position data points for a car, but they've been truncated to integer values. I want to find the speed (derivative), but for speeds which are low relative to the time between measurements, I find that repeated measurements kill my evaluation of the derivative. For example, if the actual position sequence of the car was {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}, it would be measured as {0, 0, 0, 0, 1, 1, 1, 1, 1}. So if I apply a simple difference operator, instead of getting a constant speed like the actual position sequence implies, I would be getting mostly zero speed with a sudden spike at the point where the measured position changes from 0 to 1.(adsbygoogle = window.adsbygoogle || []).push({});

So my question is, how do I properly differentiate data that looks truncated or stepped like this? (noting that I need to be able to do it in real time, i.e. without using any future data points) I've tried a few different things, but have only had marginal success. Any suggestions would be greatly appreciated.

**Physics Forums - The Fusion of Science and Community**

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Differentiating Truncated Data

Loading...

Similar Threads for Differentiating Truncated Data | Date |
---|---|

B Product rule OR Partial differentiation | Jan 10, 2018 |

A Differential operator, inverse thereof | Jan 9, 2018 |

I Differentiation of sin function where's my mistake? | Dec 21, 2017 |

I Differentials of order 2 or bigger that are equal to 0 | Dec 6, 2017 |

Can we simply truncate a Fourier series if it is divergent? | Nov 10, 2012 |

**Physics Forums - The Fusion of Science and Community**