I can't seem to find the second derivative
Sep 30, 2020 #1 Lhh 3 0 I can't seem to find the second derivative Attachments Screenshot 2020-09-30 at 12.14.28.png 36.5 KB · Views: 19
Sep 30, 2020 #2 skeeter 1,104 1 $L(\lambda) = \lambda^{150}e^{-3\lambda}$ $L’(\lambda) = 150 \lambda^{149} e^{-3\lambda} - 3\lambda^{150} e^{-3\lambda}$ $L’(\lambda) = 3\lambda^{149}e^{-3\lambda} (50-\lambda)$ note ... if $L’ = uvw$, where $u,v, \text{ and } w$ are all functions of $\lambda$, then ... $L’’ = u’vw + uv’w + uvw’$ give it a go ...
$L(\lambda) = \lambda^{150}e^{-3\lambda}$ $L’(\lambda) = 150 \lambda^{149} e^{-3\lambda} - 3\lambda^{150} e^{-3\lambda}$ $L’(\lambda) = 3\lambda^{149}e^{-3\lambda} (50-\lambda)$ note ... if $L’ = uvw$, where $u,v, \text{ and } w$ are all functions of $\lambda$, then ... $L’’ = u’vw + uv’w + uvw’$ give it a go ...