Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

Homework Help: Diffusion equation in 1D

  1. Mar 18, 2007 #1
    The solution to the diffusion equation in 1D may be written as follows:

    n'(x,t) = N/sqrt(4piDt) * exp(-x^2/4DT)

    where n'(x,t) is the concentration of the particles at position x at time t, N is the total number of particles and D is the diffusion coefficient.

    Write down an expression for the number of particles in a slab of thickness dx located at position x.

    I assumed it would be the integral of the function between x and x+dx with respect to x.

    However exp(-x^2/4Dt) can't be integrated between these values. I have a standard integral for exp(-ax^2) which is 0.5 sqrt (pi/a) but this only applies to integrating between zero and infinity.

    If anybody could point me in the right direction it would be greatly appreciated, I think I am missing something obvious here and this is a really simple question.

    Last edited: Mar 18, 2007
  2. jcsd
  3. Mar 18, 2007 #2


    User Avatar
    Science Advisor
    Homework Helper
    Gold Member

    Welcome to the forums!

    Note that the integrale of any function f(x) between x and x +dx is simply f(x) dx!

    [tex] \int_x^{x+dx} f(x') dx' \approx f(x) dx [/tex]
  4. Mar 18, 2007 #3
    Wow thanks, incredible that I could have had 14 years of education and never been taught that, thanks very much.
  5. Mar 18, 2007 #4
    Actually thinking about it, it's incredible that I couldn't work that out for myself.
Share this great discussion with others via Reddit, Google+, Twitter, or Facebook