Is this correct in infinite dimensional Hilbert spaces?(adsbygoogle = window.adsbygoogle || []).push({});

## (\hat{A}_1 \otimes \hat{A}_2)^{-1}=\hat{A}^{-1}_1 \otimes \hat{A}^{-1}_2 ##

## (\hat{A}_1 \otimes \hat{A}_2)^{\dagger}=\hat{A}^{\dagger}_1 \otimes \hat{A}^{\dagger}_2 ##

## (\hat{A}_1 +\hat{A}_2) \otimes \hat{A}_3=(\hat{A}_1 \otimes \hat{A}_2)+(\hat{A}_2 \otimes \hat{A}_3) ##

## \hat{A}_1 \otimes (\hat{A}_2+\hat{A}_3)=(\hat{A}_1 \otimes \hat{A}_2)+(\hat{A}_1 \otimes \hat{A}_3) ##

## \hat{1} \otimes \hat{1}=\hat{1} ##

## (\hat{A}_1 \otimes 0)=(0 \otimes \hat{A}_2)=0 ##

Can you tell me a book where I can see this properties. I found this only for operators which acts in finite dimensional Hilbert spaces.

**Physics Forums | Science Articles, Homework Help, Discussion**

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Direct product of operators

Loading...

**Physics Forums | Science Articles, Homework Help, Discussion**