- #1

- 6

- 0

Let be the series in the form [tex] g(s)= \sum_{1 \le n } |\Lambda (n) |^{2} n^{-s} [/tex] where lambda is Von Mangoldt function, my question is how could i get an exact or at least almost exact expresion for g(s) . My other question is how could i obtainthe Mellin transform of the function [tex] \Lambda (n+2) \Lambda (n+1) [/tex] i have tried sum by parts but got no results.

Last edited: