Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

Distance between points

  1. Feb 19, 2015 #1
    straight line AB located at number line ( coordinate x ) , point A located on a number of number line, point B located on any number of number line , that this is a function of ?
     
  2. jcsd
  3. Feb 19, 2015 #2

    RUber

    User Avatar
    Homework Helper

    Not sure I understand your question. A and B are points on the same number line? Where is x? What are you trying to find?
     
  4. Feb 19, 2015 #3
    yes - A and B are points on the same number line
     
  5. Feb 19, 2015 #4

    RUber

    User Avatar
    Homework Helper

    What is your question about a function?
    Normally, a function is an input/output relationship. You are describing two random points and a line connecting them.
     
  6. Feb 19, 2015 #5

    HallsofIvy

    User Avatar
    Staff Emeritus
    Science Advisor

    If A is a fixed point on the number line and B a variable point, then, for example, the distance between them is a function of A, f(A). If both are variable points, then it is a function of both A and B, f(A, b). Other than that, I do not know what "this" refers to in your last sentence.
     
  7. Feb 20, 2015 #6
    or a little differently A=x , B=a , AB=y , y=|x-a|


    straight line AB located at number line ( coordinate x ) , point A located on any number of number line , point B located on any number of number line , that this is a function of ?
     
  8. Feb 21, 2015 #7
    first solution
    A=x1, B=x2 , AB=y ,[tex]y=|x _1-x_2|[/tex]

    second solution
    A=x , B=y1=f(x) , AB=y2, [tex] y_2=|x-f(x)|[/tex]

    continuation - dynamic graphics, static graphics, partial graph y=|a-x| ?
     
  9. Feb 21, 2015 #8

    Mark44

    Staff: Mentor

    I suspect that you are not a native speaker of English. What you have written is very unclear, so it's hard to comprehend what you're trying to do.
    |x1 - x2| gives you the distance between two numbers on the x-axis.

    Your notation is nonstandard. AB is normally used to indicate the line segment between points A and B. To represent the length of this line segment, you could write |AB| or length(AB).
    ???
    Second solution of what?
    This is extremely unclear. You have way too many variables here: A, B, x, f(x), y1, y2
    Without more information, I don't think we'll be able to help you.
     
  10. Feb 22, 2015 #9
    native speaker of Serbian , that you read the google translator in English

    AB=|A-B| or y=|x1-x2|, since the variables segment here and point the variable I used bookmarks (x ,y)

    the first solution is provided with two variables ([itex]x_1[/itex] , [itex]x_2[/itex] )
    second solution is given with variable ( x ) and function of variables ( f(x) = [itex]y_1[/itex] )
    [itex]y_2=|x-f(x)|[/itex] or [itex]y_2=|x-y_1|[/itex] , [itex]y_1=f(x)[/itex]
    the current structure of the function is: y independent variable of n independent variables ([itex]x_n[/itex] )
    This structure functions (second solution) does not exist in the present mathematics
    independent variable x
    dependent variable y1(dependent on x )
    dependent variable y2(dependent on x and y1 )
    There are functions that are specified via the geometric object (shown here is the simplest form, the segment (straight line), through its two points) whose structure is different from the current function, which you want to help introduce myself
     
  11. Feb 22, 2015 #10

    Mark44

    Staff: Mentor

    It would help us if you told us what the function is. From what you have written, it appears that you have an iterative function something like this:
    ##x_{n + 1} = f(x_n)##
    and you're trying to see if ##|x_n - f(x_n)| = |x_n - x_{n + 1}|## is getting smaller.
     
  12. Feb 25, 2015 #11
    y = a-x
    The graph of the current solution:
    x-coordinate represents all real numbers, when solved function we have two numbers (y, x) , introduces the new coordinates y perpendicular to the x-coordinate and cut the number 0 (plane), the number of y is transferred to the y-coordinate , line (which is parallel to the y-coordinate, and on it is a point that is the number x) is cut from the line (which is parallel to the x-coordinate and it is a point that is the number y) gets the point in the plane (x, y)
    which means that the point (x, y) on the x-coordinate of the mapped into a point in the plane (x, y) points are merged to obtain a graph

    y = | a-x |
    Graph of my solution:
    x-coordinate represents all real numbers, when solved function we have three numbers (a, y, x), introduces the new coordinates y perpendicular to the x-coordinate and cut the number 0 (plane), the number of y is transferred to the y-coordinates, lines (the first parallel to the y-coordinate, and on it is a point that is the number a , the second is parallel to the y-coordinate, and on it is a point that is the number x) is cut from the line (which is parallel to the x-coordinate and it is the point which is also the number y) gave the points in the plane (x, y) and (a, y) of the connecting point is obtained straight line
    which means that the points (a, x, y) on the x-coordinates are mapped onto the straight line AB in the plane (A (x, y) B (s, y)), the straight line are merged to obtain the graph of

    static graphics
    Ap and Aq semi-line and surface between them
    https://o9alca.bn1302.livefilestore...xFPijp-ESI0Mgb-3wertC-r-TqxXJRg/ss.png?psid=1
     
  13. Feb 25, 2015 #12

    Mark44

    Staff: Mentor

    Points are normally written in this order (x, y).

    In any case, the graph of y = a - x is a straight line with slope -1, that crosses the y-axis at (0, a) and crosses the x-axis at (a, 0).
    I'm having a hard time understanding what you're trying to say here. A coordinate is one of the numbers in an ordered pair. For example, the point (2, 1) has an x-coordinate (2) and a y-coordinate (1). It doesn't make any sense to talk about something being perpendicular to the x-coordinate. A line can be parallel to the y-axis or to the line x = 2.
    The graph of this function has a V shape. Wherever a - x ≥ 0, the graph of y = |a - x| is identical to the graph of y = a - x. Where a - x < 0, the graph of y = |a - x| is the reflection across the x-axis of the graph of y = a - x.

    Assuming for the moment that a is a positive number, the graph of y = |a - x| is a straight line that goes through (0, a) down to (a, 0) with a slope of -1. From then on, the line goes up with a slope of +1.
    The number a is considered to be a parameter. It might not be known, but it doesn't change, unlike x and y, which are variable.
    In the vigilink graph (which takes a very long time to load), you are graphing y = |3 - x|. The V shape of this graph is what I was talking about above.
     
  14. Feb 28, 2015 #13
    you're wrong x ≥ 0 ( should x ≥ a ) , x < 0 ( should x < a )

    straight line from the x-coordinates of the projected area in the plane, and needs two points ( a ,x ) and the distance between them ( y )
     
  15. Feb 28, 2015 #14

    Mark44

    Staff: Mentor

    I didn't write x ≥ 0. Notice that I wrote a - x ≥ 0 and a - x < 0. The first inequality is equivalent to a ≥ x. The second inequality is equivalent to a < x.
    ???
    I don't know what you're saying.
     
  16. Feb 28, 2015 #15
    error in translation

    I'll explain using pictures
    x=1 , red color straight , x- coordinates ( |3-1| , |3-x| ) is mapped to plane (˙y=|3-x| , |3-1|=2 )
    aa.png
    x=4 , red color straight , x- coordinates ( |3-4| , |3-x| ) is mapped to plane (˙y=|3-x| , |3-4|=1 )
    a.png
     
  17. Mar 1, 2015 #16

    Mark44

    Staff: Mentor

    The pictures aren't that helpful, but what's worse is that the mathematics description you're writing doesn't make any sense. In the first drawing there are two red line segments. The upper line segment can be described as {(x, y) : 1 ≤ x ≤ 3, y = 2}. The lower segment can be described in a similar manner.

    I have no idea what you mean by this phrase: "mapped to the plane (y = |3 - x|, |3 - 1| = 2)" How is what you have described here a plane?


     
  18. Mar 7, 2015 #17
    SERBIAN
    Pošto sam otkrio nove mogućnosti , moguća rešenja
    Na x-koordinati , postoji duž AB , tačka A je nepokretna na x-koordinati , tačka B se nalazi na bilo kojem mestu x-koordinate , opisati ovo funkcijom .
    Rešenja : A=a , B=x , AB=y
    a) y=|a-x|
    b) y=-|a-x|
    c) y=a-x
    d) y=x-a

    GOOGLE TRANSLATOR
    Since I discovered new possibilities, possible solutions

    On the x-coordinate, there is straight AB, point A is fixed on the x-coordinate, point B is located at any point x-coordinates, to describe this function.

    Solutions : A=a , B=x , AB=y
    a) y=|a-x|
    b) y=-|a-x|
    c) y=a-x
    d) y=x-a
     
  19. Mar 7, 2015 #18

    Mark44

    Staff: Mentor

    Here's how I would write it:
    On the x-coordinate axis, there is straight line segment AB, point A is fixed on the x-coordinate axis at (a, 0), point B is located at (x, 0) any point x-coordinates, to describe this function.
    Solutions : A=a , B=x , AB=y
    Choice a gives the distance from A to B, and will be positive unless a = x. Choice b is the negative of the distance from A to B.

    By definition of the absolute value,
    |a - x| = a - x, if a >= x
    |a - x| = -(a - x) = x - a, if a <= x
    These two are the negatives of one another. If x > a, then a - x < 0, or equivalently, x - a > 0.
    If x < a, then a - x > 0, or equivalently, x - a < 0.
     
  20. Mar 8, 2015 #19
    SERBIAN
    Preslikavanje funkcije iz x-koordinate u ravan ( dekartov koordinatni sistem )
    y=x-a , x i a ostaju na x-koordinatu , y ide na y-koordinatu .
    prati sliku
    https://pkxnqg.bn1302.livefilestore...WSh5idkVdC-swrTkqYaXV8fmts9x7Ks/ii.png?psid=1
    prave iz x i a paralelne sa y-koordinate
    prava iz y paralelna sa x-koordinate
    u preseku pravih nastaju tačke A i B
    tačke A i B se spajaju i dobija se duž AB
    dato je za x=4 , a=2 , y=2
    ponovimo postupak za x=3.5 , a=2 , y=1.5 , prati sliku
    u preseku pravih nastaju tačke C i D
    tačke C i D se spajaju i dobija se duž CD

    https://befwwg.bn1302.livefilestore...DKraCcJKIy-UHkR4VeCHL_PmPvJTSMeM/i.png?psid=1
    spajaju se tačke AC ( BD ) duži AB i CD
    tačke ABDC čine površinu za 4≥x≥3.5

    GOOGLE TRANSLATOR
    The mapping function from the x-coordinates of the plane (Cartesian coordinate system)
    y = x-a, x and a remain on the x-coordinate, y goes to the y-coordinate.
    view photo
    https://pkxnqg.bn1302.livefilestore...WSh5idkVdC-swrTkqYaXV8fmts9x7Ks/ii.png?psid=1
    the lines of x and a parallel to the y-coordinates
    line of y parallel to the x-coordinate
    formed at the intersection of real points A and B
    points A and B are combined and gets straight line AB
    is given by x = 4, a = 2, y = 2
    Repeat for x = 3.5, a = 2, y = 1.5, view photo
    formed at the intersection of real points C and D
    points C and D are combined and received straight line CD

    https://befwwg.bn1302.livefilestore...DKraCcJKIy-UHkR4VeCHL_PmPvJTSMeM/i.png?psid=1
    connect the dots AC (BD) straight lines AB and CD
    ABDC points form the surface of 4≥x≥3.5
     
  21. Mar 14, 2015 #20
    How to look graphics functions

    a) y=|a-x|
    b) y=-|a-x|
    c) y=a-x
    d) y=x-a
    e) [tex] y=\{|a-x|\} \cup \{-|a-x|\}[/tex]
     
Know someone interested in this topic? Share this thread via Reddit, Google+, Twitter, or Facebook