(adsbygoogle = window.adsbygoogle || []).push({}); 1. The problem statement, all variables and given/known data

Let [itex]F \in \mathcal E'(\mathbf R)[/itex]. Prove that [itex]F \in \mathcal S'(\mathbf R)[/itex].

2. The attempt at a solution

Since [itex]F \in \mathcal E'(\mathbf R)[/itex], there exists a continuous function [itex]f \colon \mathbf R \to \mathbf R[/itex] and a nonnegative integer [itex]k[/itex] such that for every [itex]\varphi \in \mathcal E(\mathbf R)[/itex],

[tex]\langle F, \varphi \rangle = \int_{-\infty}^\infty f(x) \varphi^{(k)}(x) \, dx[/tex]

To prove that [itex]F \in \mathcal S'(\mathbf R)[/itex], I need to prove that if [itex]\varphi_n \to 0[/itex] in [itex]\mathcal S(\mathbf R)[/itex], then [itex]\langle F, \varphi_n \rangle \to 0[/itex]. Using the above integral representation for [itex]F[/itex], I was hoping to pass the limit under the integral sign using the dominated convergence theorem but I cannot think of any dominating integrable function. I don't know what else to do here. Any tips?

**Physics Forums | Science Articles, Homework Help, Discussion**

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Homework Help: Distributions with compact support are tempered

Can you offer guidance or do you also need help?

Draft saved
Draft deleted

**Physics Forums | Science Articles, Homework Help, Discussion**