Hi, I'm having trouble proving that:(adsbygoogle = window.adsbygoogle || []).push({});

[tex] \nabla \cdot (\textbf{A} \times \textbf{B}) = \textbf{B}\cdot

(\nabla \times \textbf{A}) - \textbf{A}\cdot (\nabla \times

\textbf{B}) [/tex]

This is how I proceeded:

[tex]\textbf{A} \times \textbf{B} = \overrightarrow{i}(A_y B_z - A_z

B_y) + \overrightarrow{j} (A_z B_x - A_x B_z) + \overrightarrow{k}

(A_x B_y - A_y B_x)[/tex]

[tex]\nabla \cdot (\textbf{A} \times \textbf{B}) = \frac{\partial A_y B_z - A_z

B_y}{\partial x} + \frac{\partial A_z B_x - A_x B_z}{\partial y} +

\frac {\partial A_x B_y - A_y B_x}{\partial z}[/tex]

[tex]\nabla \times \textbf{A} = \overrightarrow{i}(\frac{\partial A_z}{\partial y} - \frac{\partial A_y}{\partial z})

+ \overrightarrow{j}(\frac {\partial A_x}{\partial z} - \frac

{\partial A_z}{\partial x}) + \overrightarrow{k}(\frac {\partial

A_y}{\partial x} - \frac {\partial A_x}{\partial y}) [/tex]

[tex] \textbf{B} \cdot (\nabla \times \textbf{A}) = (\frac{\partial A_z B_x}{\partial y} - \frac{\partial A_y B_x}{\partial z})

+ (\frac {\partial A_x B_y}{\partial z} - \frac {\partial A_z

B_y}{\partial x}) + (\frac {\partial A_y B_z}{\partial x} - \frac

{\partial A_x B_z}{\partial y}) = [/tex]

[tex] = \frac{\partial A_y B_z - A_z

B_y}{\partial x} + \frac{\partial A_z B_x - A_x B_z}{\partial y} +

\frac {\partial A_x B_y - A_y B_x}{\partial z} = \nabla \cdot

(\textbf{A} \times \textbf{B}) [/tex]

[tex] \textbf{A} \cdot (\nabla \times \textbf{B}) = (\frac{\partial B_z A_x}{\partial y} - \frac{\partial B_y A_x}{\partial z})

+ (\frac {\partial B_x A_y}{\partial z} - \frac {\partial B_z

A_y}{\partial x}) + (\frac {\partial B_y A_z}{\partial x} - \frac

{\partial B_x A_z}{\partial y}) = -\nabla \cdot (\textbf{A} \times

\textbf{B}) [/tex]

Which finally yields:

[tex] \textbf{B}\cdot (\nabla \times \textbf{A}) - \textbf{A}\cdot (\nabla \times \textbf{B}) = 2\nabla \cdot (\textbf{A} \times \textbf{B}) [/tex]

Where did I make a mistake?

**Physics Forums | Science Articles, Homework Help, Discussion**

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Divergence of (A x B)

**Physics Forums | Science Articles, Homework Help, Discussion**