Consider the volume V bounded below by the x-y plane and above by the upper half-sphere x^2 + y^2 + z^2 = 4 and inside the cylinder x^2 + y^2 = 1(adsbygoogle = window.adsbygoogle || []).push({});

Given vector field: A = xi + yj + zk

Use the divergence theorem to calculate the flux of A out of V through the spherical cap on the cylinder.

Really stuck!

Could someone please give me tips on how to answer these sort of questions? I get really stuck, like firstly replacing dS in the surface integral, and what equations to use, etc. I couldn't even get going with this one, my only idea was just calculating the flux through the upper half sphere ... how does the cylinder equation come into it?

Thanks

**Physics Forums | Science Articles, Homework Help, Discussion**

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Homework Help: Divergence Theorem Help - Urgent

**Physics Forums | Science Articles, Homework Help, Discussion**