I am trying to verify the divergence theorem by using the triple integral and the surface integral of the vector field dotted with dS.(adsbygoogle = window.adsbygoogle || []).push({});

No trouble per se, I'm not sure though about one thing: I am given a function and six planes (they form a cube). When I set x=0 the vector field is given as <3,y,2z> and I need to dot that with the normal vector. I am choosing the normal vector as <0,0,0>. I get the same answer as the book I am using, but they chose a different normal vector. Is my normal vector <0,0,0> right when I have a plane x=0?

I am doing the same for other planes: y=0 normal: <0,0,0>; y=1 normal: <0,1,0>; z=1 normal: <0,0,1> etc.

Thanks!

**Physics Forums | Science Articles, Homework Help, Discussion**

Dismiss Notice

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Divergence Theorem

Loading...

Similar Threads for Divergence Theorem |
---|

I Divergent series question |

I What do Stokes' and Green's theorems represent? |

**Physics Forums | Science Articles, Homework Help, Discussion**